Issue
Korean Journal of Chemical Engineering,
Vol.35, No.9, 1791-1799, 2018
Modeling and simulation for acrylamide polymerization of super absorbent polymer
In view of the scale up of a batch reactor for super absorbent polymer (SAP), a dynamic mathematical model of a commercial scale batch reactor was developed with mass balance, energy balance, and complex polymerization kinetics. The kinetic parameters of the polymerization were estimated on the basis of the established mathematical model and reference data. Simulation results were validated with less than 10% marginal error compared with reference data. A case study was executed in terms of dynamic simulation for eight different initial concentrations of initiator and monomer to analyze the influence of initial concentration and predict the operation condition for desired product. The results were compared with various reference data, and good agreement was achieved. From the results, we argue that the methodology and results from this study can be used for the scale up of a polymerization batch reactor from the early stage of design.
[References]
  1. Francis S, Kumar M, Varshney L, Radiat. Phys. Chem., 69, 481, 2014
  2. Chang SC, Yoo JS, Woo JW, Choi JS, Korean J. Chem. Eng., 16(5), 581, 1999
  3. Sojka RE, Entry JA, Environ. Pollut., 108, 405, 2000
  4. Mohammad JZ, Kabiri K, Iran. Polym. J., 17, 451, 2008
  5. Wisniewska M, Chibowski S, Urban T, J. Ind. Eng. Chem., 21, 925, 2015
  6. Sodeifian G, Daroughegi R, Aalaie J, Korean J. Chem. Eng., 32(12), 2484, 2015
  7. Chamovsk D, Cvetkovska M, Grchev T, Croat. Chem. Acta, 81, 461, 2008
  8. Pourjavadi A, Mahdavinia GR, Turk. J. Chem., 30(5), 595, 2006
  9. Oladipo AA, Synthesis and characterization of modified chitosanbased novel superabsorbent hydrogel: swelling and dye adsorption behavior, Master’s Thesis EMU (2011).
  10. Sadeghi M, Hosseinzadeh H, Turk. J. Chem., 32(3), 375, 2008
  11. Scott RA, Peppas NA, AIChE J., 43, 135, 1996
  12. Ishige T, Hamielec AE, J. Appl. Polym. Sci., 17, 1479, 1973
  13. Giz A, Catalgil-Giz H, Alb A, Brousseau JL, Reed WF, Macromolecules, 34(5), 1180, 2001
  14. Hunkeler D, Macromolecules, 24, 2160, 1991
  15. Preusser C, Chovancova A, Lacik I, Hutchinson RA, Macromol. React. Eng., 10, 49, 2016
  16. Process Systems Enterprise Co., https://www.psenterprise.com (2017).
  17. Vo ND, Jung MY, Oh DH, Park JS, Moon I, Oh M, Combust. Flame, 189, 12, 2018
  18. Kim SH, Nyande BW, Kim HS, Park JS, Lee WJ, Oh M, J. Hazard. Mater., 308, 120, 2016
  19. Venkatarao K, Santappa M, J. Polym. Sci., 8, 1785, 1970
  20. Abu-Thabit NY, World J. Chem. Education, 5, 94, 2017
  21. Echtermeyer A, Amar Y, Zakrzewski J, Lapkin A, Beilstein. J. Org. Chem., 13, 150, 2017
  22. Lin HR, Eur. Polym. J., 37, 1507, 2001
  23. Rintoul I, Wandrey C, Lat. Am. Appl. Res., 40, 365, 2010
  24. Kang SC, Choi YJ, Kim HZ, Kyong JB, Kim DK, Macromol. Res., 12(1), 107, 2004
  25. Pladis P, Kotrotsiou O, Gkementzoglou C, Kiparissides C, 2015 10th Int. Conf. Panhellenic Scientific Conference in Chemical Engineering (2015).
  26. Abdollahi Z, Gomes VG, Chemeca 2011: Engineering a Better World (2011).
  27. Xu J, Zhao WP, Wang CX, Wu YM, Express. Polym. Lett., 4, 275, 2010
  28. Sigma-aldrich Co., https://www.sigmaaldrich.com/catalog/product/aldrich/767379?lang=ko®ion=KR&cm_sp=Insite-_-prodRec-Cold_xviews-_-prodRecCold10-1 (2018).