Issue
Korean Journal of Chemical Engineering,
Vol.35, No.8, 1735-1740, 2018
A visible-light-active BiFeO3/ZnS nanocomposite for photocatalytic conversion of greenhouse gases
Given the changes in environmental conditions in the world, photocatalytic conversion of greenhouse gases is of great interest today. Our aim was to increase the photocatalytic efficiency of BiFeO3/ZnS (p-n heterojunction photocatalyst) by varying the molar ratio of ZnS to perovskite structure of BiFeO3 using hydrothermal synthesis. The results of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), FT-IR spectroscopy showed the small crystal size and suitable distribution of ZnS particles on the BiFeO3 structure. The results of UV-visible, and photoluminescence (PL) spectroscopy analyses showed the good behavior of p-n heterostructure in absorption of visible light and lowering electron-hole recombination. The best visible light photocatalytic efficiency of CO2 reduction, 24.8%, was obtained by an equimolar ratio of BiFeO3/ZnS.
[References]
  1. Chang X, Zheng J, Gondal MA, Ji G, Res. Chem. Intermed., 41(2), 739, 2015
  2. Rodhe H, Science, 248, 1217, 1990
  3. Im YH, Lee JH, Kang MS, Korean J. Chem. Eng., 34(6), 1669, 2017
  4. Subramonian W, Wu TY, Chai SP, J. Environ. Manage., 187, 298, 2017
  5. Teh CY, Wu TY, Juan JC, Chem. Eng. J., 317, 586, 2017
  6. Qin Z, Tian H, Su T, Ji H, Guo Z, RSC Adv., 6, 52665, 2016
  7. Nuraje N, Su K, Nanoscale, 5, 8752, 2013
  8. Kim JK, Kim SS, Kim WJ, Mater. Lett., 59, 4006, 2005
  9. Gao T, Chen Z, Zhu YX, Niu F, Huang QL, Qin LS, Sun XG, Huang YX, Mater. Res. Bull., 59, 6, 2014
  10. Baran T, Wojtyla S, Dibenedetto A, Aresta M, Macyk W, Appl. Catal. B: Environ., 178, 170, 2015
  11. Zhang Y, Schultz AM, Salvador PA, Rohrer GS, J. Mater. Chem., 21, 4168, 2011
  12. Ramadan W, Shaikh PA, Ebrahim S, Ramadan A, Hannoyer B, Jouen S, Sauvage X, Ogale S, J. Nanopart. Res., 15, 1848, 2013
  13. Kaur S, Sharma S, Kansal SK, Superlattices Microstruct., 98, 86, 2016
  14. Kashinath L, Namratha K, Byrappa K, J. Alloy. Compd., 695, 799, 2017
  15. Ramadan W, Shaikh PA, Ebrahim S, Ramadan A, Hannoyer B, Jouen S, Sauvage X, Ogale S, J. Nanopartic. Res., 15, 1848, 2013
  16. Iranmanesh P, Saeednia S, Nourzpoor M, Chin. Phys. B, 24(4), 046104, 2015
  17. Matovic B, Pantic J, Lukovic J, Cebela M, Dmitrovic S, Mirkovic M, Prekajski M, Ceram. Int., 42, 615, 2016
  18. Zhang Y, Zheng A, Yang X, He H, Fan Y, Yao C, Cryst. Eng. Comm., 14, 8432, 2012
  19. Som KK, Molla S, Bose K, Chaudhuri BK, Phys. Rev. B, 45, 4, 1992
  20. Lotey GS, Verma NK, Mater. Sci. Semiconduc. Proces., 21, 206, 2014
  21. Cebela M, Zagorac D, Batalovic K, Radkovic J, Stojadinovic B, Spasojevic V, Hercigonja R, Ceram. Int., 43, 1256, 2017
  22. Yousefi R, Kamaluddin B, Ghoranneviss M, Hajakbari F, Appl. Surf. Sci., 255(15), 6985, 2009
  23. Soga T, Nanostructured materials for solar energy conversion, Elsevier. 1st Ed. (2006).
  24. Li L, Salvador PA, Rohre GS, Nanoscale, 6, 24, 2014
  25. Yazdanpour N, Sharifnia S, Sol. Energy Mater. Sol. Cells, 118, 1, 2013
  26. Mahmodi G, Sharifnia S, Madani M, Vatanpour V, Solar Energy, 97, 186, 2013
  27. Merajin MT, Sharifnia S, Hosseini SN, Yazdanpour N, J. Taiwan Inst. Chem. Eng., 44, 239, 2013
  28. Karamian E, Sharifnia S, J. CO2 Util., 16, 194, 2016