Issue
Korean Journal of Chemical Engineering,
Vol.35, No.8, 1673-1679, 2018
Engineering of Saccharomyces cerevisiae for enhanced production of L-lactic acid by co-expression of acid-stable glycolytic enzymes from Picrophilus torridus
L-lactic acid, as a monomer of polylactic acid, has attracted much attention because of the growing market for biodegradable bioplastics to reduce landfill waste. As an industrial L-lactic acid producer, Saccharomyces cerevisiae is generally used because it survives in low pH. However, in S. cerevisiae, production of L-lactic acid causes a decrease in intracellular pH, which leads to slow glycolytic flux, and consequently results in a lower productivity of L-lactic acid. For this reason, yeast strains that maintain their growth and the activities of metabolic enzymes during lactic acid production need to be developed for industrial applications. Herein, acid stable enzymes from acidophilic archaea Picrophilus torridus were expressed in L-lactic acid producing S. cerevisiae to increase glycolytic flux at low intracellular pH conditions for a higher L-lactic acid titer. Enzymes of lower glycolysis including phosphoglycerate kinase, phosphoglycerate mutase, enolase, and pyruvate kinase from P. torridus were introduced to develop a novel L-lactic acid producing strain. It was clearly shown that the production of lactic acid in the developed strain increased by 20% compared to the parental strain. To the best of our knowledge, this is the first report of P. torridus enzymes used in metabolic engineering to enhance the metabolic flux at a lower intracellular pH. Moreover, it is expected that the new strain will have an enhanced glycolytic flux at a low pH expressing acid stable enzymes that could be used to produce other valuable organic acids with increased titers.
[References]
  1. Abdel-Rahman MA, Tashiro Y, Sonomoto K, Biotechnol. Adv., 31, 877, 2013
  2. Sauer M, Porro D, Mattanovich D, Branduardi P, Trends Biotechnol., 26, 100, 2008
  3. Sauer M, Porro D, Mattanovich D, Branduardi P, Biotechnol. Genet. Eng. Rev., 27, 229, 2010
  4. Datta R, Tsai SP, Bonsignore P, Moon SH, Frank JR, Fems Microbiol. Rev., 16, 221, 1995
  5. Benninga HA, Kluwer Academic Publishers, Dordrecht, The Netherlands (1990).
  6. Bianchi MM, Brambilla L, Protani F, Liu CL, Lievense J, Porro D, Appl. Environ. Microbiol., 67, 5621, 2001
  7. Porro D, Bianchi MM, Brambilla L, Menghini R, Bolzani D, Carrera V, Lievense J, Liu CL, Ranzi BM, Frontali L, Alberghina L, Appl. Environ. Microbiol., 65, 4211, 1999
  8. Branduardi P, Valli M, Brambilla L, Sauer M, Alberghina L, Porro D, FEMS Yeast Res., 4, 493, 2004
  9. Ilmen M, Koivuranta K, Ruohonen L, Suominen P, Penttila M, Appl. Environ. Microbiol., 73, 117, 2007
  10. Ikushima S, Fujii T, Kobayashi O, Yoshida S, Yoshida A, Biosci. Biotechnol. Biochem., 73, 1818, 2009
  11. Osawa F, Fujii T, Nishida T, Tada N, Ohnishi T, Kobayashi O, Komeda T, Yoshida S, Yeast, 26, 485, 2009
  12. Ilmen M, Koivuranta K, Ruohonen L, Rajgarhia V, Suominen P, Penttila M, Microb. Cell. Fact., 12, 15, 2013
  13. Dequin S, Barre P, Biotechnology, 12, 173, 1994
  14. Porro D, Brambilla L, Ranzi BM, Martegani E, Alberghina L, Biotechnol. Prog., 11(3), 294, 1995
  15. Branduardi P, Sauer M, De Gioia L, Zampella G, Valli M, Mattanovich D, Porro D, Microb. Cell. Fact., 5, 4, 2006
  16. Adachi E, Torigoe M, Sugiyama M, Nikawa J, Shimizu K, J. Ferment. Bioengy, 86, 284, 1998
  17. Tokuhiro K, Ishida N, Nagamori E, Saitoh S, Onishi T, Kondo A, Takahashi H, Appl. Microbiol. Biotechnol., 82(5), 883, 2009
  18. Valli M, Sauer M, Branduardi P, Borth N, Porro D, Mattanovich D, Appl. Environ. Microbiol., 72, 5492, 2006
  19. Rossi G, Sauer M, Porro D, Branduardi P, Microb. Cell. Fact., 9, 10, 2010
  20. Pacheco A, Talaia G, Sa-Pessoa J, Bessa D, Goncalves MJ, Moreira R, Paiva S, Casal M, Queiros O, FEMS Yeast Res., 12, 375, 2012
  21. Lee JW, In JH, Park J, Shin J, Park JH, Sung BH, Sohn J, Seo J, Park J, Kim SR, Kweon D, J. Biotechnol., 241, 81, 2017
  22. Dato L, Berterame NM, Ricci MA, Paganoni P, Palmieri L, Porro D, Branduardi P, Microb. Cell. Fact., 13, 18, 2014
  23. Lee JY, Kang CD, Lee SH, Park YK, Cho KM, Biotechnol. Bioeng., 112(4), 751, 2015
  24. Mira NP, Teixeira MC, Sa-Correia I, OMICS, 14, 525, 2010
  25. Orij R, Brul S, Smits GJ, Biochim. Biophys. Acta, 1810, 933, 2011
  26. Baker-Austin C, Dopson M, Trends Microbiol., 15, 165, 2007
  27. Futterer O, Angelov A, Liesegang H, Gottschalk G, Schleper C, Schepers B, Dock C, Antranikian G, Liebl W, Proc. Natl. Acad. Sci. U.S.A., 101, 9091, 2004
  28. Mumberg D, Muller R, Funk M, Gene, 156, 119, 1995
  29. Sikorski RS, Hieter P, Genetics., 122, 19, 1989
  30. Gietz RD, Schiestl RH, Nat. Protoc, 2, 35, 2007
  31. Kim SY, Lee J, Lee SY, Biotechnol. Bioeng., 112(2), 416, 2015
  32. Angelov A, Liebl W, J. Biotechnol., 126, 3, 2006
  33. Chung SC, Koo HM, Kim JY, Kim JE, Kim JW, Park YK, Lee SY, Cho HY, Kwon DH, Park JC, US Patent, 2013/0065284 (2013).
  34. Utekal P, Toth C, Illesova A, Kois P, Bocanova L, Turna J, Drahovska H, Stuchlik S, Biologia, 69, 722, 2014
  35. McFarland JT, Chu Y, Biochemistry, 14, 1140, 1975