Issue
Korean Journal of Chemical Engineering,
Vol.35, No.8, 1620-1625, 2018
Anion-exchange-membrane-based electrochemical synthesis of ammonia as a carrier of hydrogen energy
With a 17.6 wt% hydrogen content, ammonia is a non-carbon-emitting, easy to store and transport, carrier of hydrogen energy. In this study, an anion-exchange-membrane-based (AEM-based) electrochemical cell was used to electrochemically synthesize ammonia from water and nitrogen under ambient conditions. The electrochemical cell was fabricated by attaching Pt/C to both sides of the AEM, and ammonia was generated by supplying nitrogen gas to the cathodic chamber of the cell. AC impedance and current-voltage (I-V) properties were analyzed in relation to the externally applied voltage, and ammonia-formation rates and faradaic efficiencies were determined. The maximum ammonia-formation rate was 1.96X10 -11 molㆍs-1ㆍcm-2 at an applied voltage of 2V, with a faradaic efficiency of 0.18%.
[References]
  1. Gotz M, Lefebvre J, Mors F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T, Renew. Energy, 85, 1371, 2016
  2. Klerke A, Christensen CH, Nørskov JK, Vegge T, J. Mater. Chem., 18, 2304, 2008
  3. Zuttel A, Remhof A, Borgschulte A, Friedrichs O, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 368, 3329, 2010
  4. Zhang T, Miyaoka H, Miyaoka H, Ichikawa T, Kojima Y, ACS Appl. Energy Mater., 1, 232, 2018
  5. Boudart M, Top. Catal., 1, 405, 1994
  6. Reese M, Marquart C, Malmali M, Wagner K, Buchanan E, McCormick A, Cussler EL, Ind. Eng, Chem. Res., 55, 3742, 2016
  7. Lan R, Irvine JTS, Tao SW, Int. J. Hydrog. Energy, 37(2), 1482, 2012
  8. Bicer Y, Dincer I, J. Clean Prod., 170, 1594, 2018
  9. Kim S, Song J, Lim H, Korean J. Chem. Eng., 35, 1, 2018
  10. Giddey S, Badwal SPS, Kulkarni A, Int. J. Hydrog. Energy, 38(34), 14576, 2013
  11. Amar IA, Lan R, Petit CTG, Tao S, J. Solid State Electrochem., 15, 1845, 2011
  12. Kyriakou V, Garagounis I, Vasileiou E, Vourros A, Stoukides M, Catal. Today, 286, 2, 2017
  13. Singh AR, Rohr BA, Schwalbe JA, Cargnello M, Chan K, Jaramillo TF, Chorkendorff I, Nørskov JK, ACS Catal., 7, 706, 2017
  14. Marnellos G, Stoukides M, Science, 282, 98, 1998
  15. Yun DS, Joo JH, Yu JH, Yoon HC, Kim JN, Yoo CY, J. Power Sources, 284, 245, 2015
  16. Skodra A, Stoukides M, Solid State Ion., 180(23-25), 1332, 2009
  17. Yoo CY, Park JH, Kim K, Han JI, Jeong EY, Jeong CH, Yoon HC, Kim JN, ACS Sustainable Chem. Eng., 5, 7972, 2017
  18. Jeoung H, Kim JN, Yoo CY, Joo JH, Yu JH, Song KC, Sharma M, Yoon HC, Korean Chem. Eng. Res., 52(1), 58, 2014
  19. Kim K, Yoo CY, Kim JN, Yoon HC, Han JI, Korean J. Chem. Eng., 33(6), 1777, 2016
  20. Kordali V, Kyriacou G, Lambrou C, Chem. Commun., 17, 1673, 2000
  21. Xu G, Liu R, Wang J, Sci. China Chem., 52, 1171, 2009
  22. Liu R, Chin. J. Chem., 28, 139, 2010
  23. Zhang Z, Zhong Z, Liu R, J. Rare Earth., 28, 556, 2010
  24. Lan R, Irvine JTS, Tao S, Sci. Rep., 3, 1145, 2013
  25. Lan R, Tao S, RSC Adv., 3, 18016, 2013
  26. Chen S, Perathoner S, Ampelli C, Mebrahtu C, Su D, Centi G, Angew. Chem.-Int. Edit., 56, 2699, 2017
  27. Chen S, Perathoner S, Ampelli C, Mebrahtu C, Su D, Centi G, ACS Sustainable Chem. Eng., 5, 7393, 2017
  28. Renner JN, Greenlee LF, Ayres KE, Herring AM, Electrochem. Soc. Interface, 24, 51, 2015
  29. Uribe FA, Gottesfeld S, Zawodzi TA, J. Electrochem. Soc., 149, 293, 2002
  30. Halseid R, Vie PJS, Tunold R, J. Power Sources, 154(2), 343, 2006
  31. Lan R, Tao S, Electrochem. Solid-State Lett., 13, 83, 2010
  32. Suzuki S, Muroyama H, Matsui T, Eguchi K, J. Power Sources, 208, 257, 2012
  33. Nash J, Yang X, Anibal J, Wang J, Yan Y, Xu B, J. Electrochem. Soc., 164, 1712, 2017
  34. Kong J, Lim A, Yoon C, Jang JH, Ham HC, Han J, Nam S, Kim D, Sung YE, Choi J, Park HS, ACS Sustainable Chem. Eng., 5, 10986, 2017
  35. Sheets BL, Botte GG, Chem. Commun. (2018), DOI:10.1039/c8cc00657a.
  36. Hwang GJ, Lim SG, Bong SY, Ryu CH, Choi HS, Korean J. Chem. Eng., 32(9), 1896, 2015
  37. Ivancic I, Water Res., 18, 1143, 1984
  38. Aminot A, Kirkwood DS, Kerouel R, Marine Chem., 56, 59, 1997
  39. Felix EP, Cardoso AA, Instrument. Sci. Technol., 31, 283, 2003
  40. Crosby NT, Analyst, 93, 406, 1968
  41. Afkhami A, Zarei AR, Talanta, 62, 559, 2004
  42. Yoo CY, Yun DS, Park SY, Park J, Joo JH, Park H, Kwak M, Yu JH, Electrocatal., 7, 280, 2016
  43. Dale NV, Mann MD, Salehfar H, Dhirde AM, Han T, J. Fuel Cell Sci. Technol., 7, 31010, 2010
  44. Kishira S, Qing G, Suzu S, Kikuchi R, Takagaki A, Oyama ST, Int. J. Hydrog. Energy, 42(43), 26843, 2017
  45. Garcia-Herrero I, Alvarez-Guerra M, Irabien A, J. Chem. Technol. Biotechnol., 91(2), 507, 2016
  46. Sclafani A, Augugliaro V, Schiavello M, J. Electrochem. Soc., 130, 734, 1983