Issue
Korean Journal of Chemical Engineering,
Vol.35, No.8, 1611-1619, 2018
Catalytic conversion of 1,1,1,2-tetrafluoroethane (HFC-134a)
We examined the conversion of HFC-134a over five catalysts, Na2CO3, CaO, CaCO3, and two types of γ- Al2O3 with different surface areas, between 300 and 600 °C. HFC-134a was barely converted via the non-catalytic reaction, even at the highest temperature (600 °C). The operating temperatures for the catalytic conversion of HFC-134a were reduced dramatically and its efficiency increased with increasing temperature. Among the catalysts used, γ-Al2O3 with the larger surface area showed the highest conversion rate of HFC-134a, which was followed, in order, by γ-Al2O3 with the smaller surface area, CaCO3, CaO, and Na2CO3. The conversion rate of γ-Al2O3 decreased rapidly due to catalyst deactivation. The catalytic efficiency of γ-Al2O3 was maintained for a longer period by water addition. Water acted as a hydrogen donor for the dehydrofluorination reaction.
[References]
  1. Hausfather Z, Cowtan K, Clarke DC, Jacobs P, Richardson M, Rohde R, Sci. Adv., 3, 1, 2017
  2. United Nations Framework Convention on Climate Change -The Paris Agreement. http://unfccc.int/paris_agreement/items/9485.php (Accessed 05.11.2017).
  3. Montreal Protocol - Achievements to Date and Challenges Ahead. http://ozone.unep.org/en/focus/montreal-protocol-achievementsdate-and-challenges-ahead (Accessed 05.11.2017).
  4. UNFCCC 1998. The Kyoto Protocol to the United Nations Framework Convention on Climate Change. https://unfccc.int/resource/docs/convkp/kpeng.pdf (Accessed at 17.11.2017).
  5. UNEP 2011. HFCs: A Critical Link in Protecting Climate and the Ozone Layer. United Nations Environment Programme (UNEP).
  6. Kigali Amendment to the Montreal Protocol. https://eia-international.org/wp-content/uploads/EIA-Kigali-Amendment-to-the-Montreal-Protocol-FINAL.pdf (Accessed 03.11.2017).
  7. Mi T, Han J, He X, Qin L, Environ. Protect. Eng., 41, 143, 2015
  8. Ohno M, Ozawa Y, Ono T, Int. J. Plasma Environ. Sci. Technol., 1, 159, 2007
  9. Mok YS, Demidyuk V, Whitehead JC, J. Phys. Chem. A, 112(29), 6586, 2008
  10. Jasinski M, Dors M, Mizeraczyk J, Plasma Chem. Plasma Process., 29(5), 363, 2009
  11. Narengerile, Saito H, Watanabe T, Plasma Chem. Plasma Process., 30(6), 813, 2010
  12. Kundu SK, Kennedy EM, Mackie JC, Holdsworth CI, Molloy TS, Gaikwad VV, Dlugogorski BZ, Chem. Eng. J., 284, 412, 2016
  13. Iizuka A, Ishizaki H, Mizukoshi A, Noguchi M, Yamasaki A, Yanagisawa Y, Ind. Eng. Chem. Res., 50(21), 11808, 2011
  14. Takita Y, Tanabe T, Ito M, Ogura M, Muraya T, Yasuda S, Nishiguchi H, Ishihara T, Ind. Eng. Chem. Res., 41(11), 2585, 2002
  15. Decomposition of fluoroform (HFC-23) waste streams, https://cdm.unfccc.int/methodologies/PAmethodologies/approved (Accessed05.11.2017).
  16. Han W, Li Y, Tang H, Liu H, J. Fluor. Chem., 140, 7, 2012
  17. Jia WZ, Wu Q, Lang XW, Hu C, Zhao GQ, Li JH, Zhu ZR, Catal. Lett., 145(2), 654, 2015
  18. Jia W, Wu Q, Lang X, Hu C, Zhao G, Li J, Zhu Z, Catal. Sci. Technol., 5, 3103, 2015
  19. Takita Y, Ninomiya M, Miyake H, Wakamatsu H, Yoshinaga Y, Ishihara T, Phys. Chem. Chem. Phys., 1, 4501, 1999
  20. El-Bahy ZM, Ohnishi R, Ichikawa M, Appl. Catal. B: Environ., 40(2), 81, 2003
  21. El-Bahy ZM, Ohnishi R, Ichikawa M, Catal. Today, 90(3-4), 283, 2004
  22. Jeon JY, Xu XF, Choi MH, Kim HY, Park YK, Chem. Commun., 11, 1244, 2003
  23. Xu XF, Jeon JY, Choi MH, Kim HY, Choi WC, Park YK, J. Mol. Catal. A-Chem., 266(1-2), 131, 2007
  24. Vileno E, LeClair MK, Suib SL, Cutlip MB, Galasso FS, Hardwick SJ, Chem. Mater., 7, 683, 1995
  25. Niu X, Sun L, Wang Y, Wu H, Xu X, J. Natural Gas Chem., 19, 463, 2010
  26. Xu X, Sun L, Wang Y, J. Natural Gas Chem., 20, 418, 2011
  27. Kim YS, Park NK, Lee TJ, Appl. Chem. Eng., 26(2), 154, 2015
  28. Wang Y, Xu X, Sheng P, Li H, Wang T, Huang Y, Liu F, J. Natural Gas Chem., 20, 457, 2011
  29. Park NK, Park HG, Lee TJ, Chang WC, Kwon WT, Catal. Today, 185(1), 247, 2012
  30. Feaver WB, Rossin JA, Catal. Today, 54(1), 13, 1999
  31. Onoda H, Ohta T, Tamaki J, Kojima K, Appl. Catal. A: Gen., 288(1-2), 98, 2005
  32. Han W, Chen Y, Jin B, Liu H, Greenhouse Gas Sci Technol., 4, 121, 2014
  33. Gandhi MS, Mok YS, Int. J. Environ. Sci. Technol., 12, 499, 2015
  34. Kowalak S, React. Kinet. Catal. Lett., 19, 35, 1982
  35. Skapin T, Kemnitz E, Catal. Lett., 40(3-4), 241, 1996
  36. Boese O, Unger WES, Kemnitz E, Schroeder SLM, Phys. Chem. Chem. Phys., 4, 2824, 2002
  37. Farris MM, Klinghoffer AA, Rossin JA, Tevault DE, Catal. Today, 11, 501, 1992
  38. Teinz K, Wuttke S, Borno F, Eicher J, Kemnitz E, J. Catal., 282(1), 175, 2011
  39. Karmakar S, Greene HL, J. Catal., 151(2), 394, 1995
  40. Park HG, Park NK, Lee TJ, Chang WC, Kwon WT, Clean Technol., 18(1), 83, 2012