Issue
Korean Journal of Chemical Engineering,
Vol.35, No.8, 1601-1610, 2018
A model predictive functional control based on proportional-integral-derivative (PID) and proportional-integral-proportional-derivative (PIPD) using extended non-minimal state space: Application to a molten carbonate fuel cell process
The performance of most controllers, including proportional-integral-derivative (PID) and proportionalintegral- proportional-derivative (PIPD) controllers, depends upon tuning of control parameters. In this study, we propose a novel tuning strategy for PID and PIPD controllers whose control parameters are tuned using the extended non-minimal state space model predictive functional control (ENMSSPFC) scheme based on the auto-regressive moving average (ARMA) model. The proposed control method is applied numerically in the operation of the MCFC process with the parameters of PID and PIPD controllers being optimized by ENMSSPFC based on the ARMA model for the MCFC process. Numerical simulations were carried out to assess the set-point tracking performance and disturbance rejection performance both for the perfect plant model, which represents the ideal case, and for the imperfect plant model, which is usual in practical applications. When there exists uncertainty in the plant model, the PIPD controller exhibits better overall control performance compared to the PID controller.
[References]
  1. Tchamna R, Lee M, Korean J. Chem. Eng., 34(4), 961, 2017
  2. Xu M, Li SY, Cai WJ, Ind. Eng. Chem. Res., 44(8), 2848, 2005
  3. Savran A, Appl. Soft Comput., 13(5), 2658, 2013
  4. Zhang RD, Li P, Ren Z, Wang S, 2009 IEEE International Conference on Control and Automation, New Zealand, Christchurch, 314 (2009).
  5. Majhi S, Ph.D. Dissertation Univ. of Sussex, Brighton, UK (1999).
  6. Astrom KJ, Hagglund T, Instrument Society of America, Research Triangle Park, NC (1995).
  7. Tyreus BD, Luyben WL, Ind. Eng. Chem. Res., 31, 2625, 1992
  8. Zhuang M, Artherton DP, IEEE Proc.-D: Control Theory Appl., 140(3), 216, 1993
  9. Padhy PK, Majhi S, Comput. Chem. Eng., 30(5), 790, 2006
  10. Tsai KI, Tsai CC, IEEE, Taipei, Taiwan, 535 (2011).
  11. Zhang RD, Cao ZX, Li P, Gao FR, IET Control Theory, 8(14), 1303, 2014
  12. Wu S, Ind. Eng. Chem. Res., 53, 5505, 2015
  13. Wu S, Chemometrics and Intelligent Laboratory Systems, 143, 16, 2015
  14. Zou H, Li H, Chemometrics and Intelligent Laboratory Systems, 142, 1, 2015
  15. Gonzalez AH, Perez JM, Odloak D, J. Process Control, 19(3), 473, 2009
  16. Wang LP, Young PC, J. Process Control, 16(4), 355, 2006
  17. Zhang RD, Cao ZX, Bo CM, Li P, Gao FR, Ind. Eng. Chem. Res., 53(8), 3283, 2014
  18. Wang LP, J. Process Control, 14(2), 131, 2004
  19. Zhang RD, Xue AK, Wang SQ, Ren ZY, J. Process Control, 21(8), 1183, 2011
  20. Hirschenhofer JH, Stauffer DB, Engleman RR, Klett MG, U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center, Morgantown (1998).
  21. Permatasari A, Fasahati P, Ryu JH, Liu JJ, Korean J. Chem. Eng., 33(12), 3381, 2016
  22. Zhang JM, Ind. Eng. Chem. Res., 52(13), 4874, 2013
  23. Zhang RD, Gao FR, Ind. Eng. Chem. Res., 52(2), 817, 2013