Issue
Korean Journal of Chemical Engineering,
Vol.35, No.6, 1373-1379, 2018
Two dimensional Zn-stilbenedicarboxylic acid (SDC) metal-organic frameworks for cyclic carbonate synthesis from CO2 and epoxides
A two-dimensional Zn-based metal-organic framework has been synthesized by using Zn(II) ions and H2SDC (4,4'-stilbenedicarboxylic acid) under solvothermal conditions. The framework having a trinuclear Zn3-(RCO2)6 SBUs connected by the 4,4'-stilbenedicarboxylic acid to form a hexagonal network, shows a two-dimensional structure and displays high thermal stability up to approximately 330 °C. The role of Zn2+ (from Zn-SDC) for epoxide activation and Br- ion (from TBABr) for ring opening of epoxide was studied for the cycloaddition reaction of CO2 and propylene oxide (PO) under ambient conditions. Zn-SDC was found catalytically efficient towards CO2-epoxide coupling under ambient reaction conditions with high selectivity towards the desired cyclic carbonates under solvent-free conditions. The effects of various reaction parameters such as catalyst loading, temperature, CO2 pressure, and time were evaluated. Zn-SDC was easily separable and reusable at least five times without any considerable loss in the initial activity. A plausible reaction mechanism for the cycloaddition reaction was also proposed based on literature and experimental inferences.
[References]
  1. Klaus S, Lehenmeier MW, Anderson CE, Rieger B, Coord. Chem. Rev., 255, 1460, 2011
  2. Aresta M, Dibenedetto A, Dalton Trans., 28, 2975, 2007
  3. Melendez J, North M, Villuendas P, Chem. Commun., 18, 2577, 2009
  4. Tu M, Davis RJ, J. Catal., 199(1), 85, 2001
  5. Doskocil EJ, Microporous Mesoporous Mater., 76, 177, 2004
  6. Doskocil EJ, J. Phys. Chem. B, 109(6), 2315, 2005
  7. Srivastava R, Srinivas D, Ratnasamy P, Appl. Catal. A: Gen., 289(2), 128, 2005
  8. Alhashmialameer D, Collins J, Hattenhauera K, Kerton FM, Catal. Sci. Technol., 6, 5364, 2016
  9. Darensbourg DJ, Fitch SB, Inorg. Chem., 47(24), 11868, 2008
  10. Pescarmona PP, Taherimehr M, Catal. Sci. Technol., 2, 2169, 2012
  11. Kim SN, Kim J, Kim HY, Cho HY, Ahn WS, Catal. Today, 204, 85, 2013
  12. Chung YG, Camp J, Haranczyk M, Sikora BJ, Bury W, Krungleviciute V, Yildirim T, Farha OK, Sholl DS, Snurr RQ, Chem. Mater., 26, 21, 2014
  13. Babu R, Kathalikkattil AC, Roshan R, Tharun J, Kim DW, Park DW, Green Chem., 18, 232, 2016
  14. Babu R, Roshan R, Kathalikkattil AC, Kim DW, Park DW, ACS Appl. Mater. Interfaces, 8, 33723, 2016
  15. Kathalikkattil AC, Kim DW, TharunJ, Soek HG, Roshan R, Park DW, Green Chem., 16, 1607, 2014
  16. Son WJ, Kim J, Kim J, Ahn WS, Chem. Commun., 47, 6336, 2008
  17. Chen Y, Xiao J, Lv D, Huang T, Xu F, Sun X, Xi H, Xia Q, Li Z, Chem. Eng. Sci., 158, 539, 2017
  18. Tharun J, Mathai G, Kathalikkattil AC, Roshan R, Won YS, Cho SJ, Chang JS, Park DW, ChemPlusChem, 80, 715, 2015
  19. Babu R, Kathalikkattil AC, Roshan R, Tharun J, Kim DW, Park DW, Green Chem., 18, 232, 2016
  20. Bauer CA, Timofeeva TV, Settersten TB, Patterson BD, Liu VH, Simmons BA, Allendorf MD, J. Am. Chem. Soc., 129(22), 7136, 2007
  21. Xie Y, Zhang Z, Jiang T, He J, Han B, Wu T, Ding K, Angew. Chem.-Int. Edit., 46, 7255, 2007
  22. Webb PB, Sellin MF, Kunene TE, Williamson S, Slawin AMZ, Cole-Hamilton DJ, J. Am. Chem. Soc., 125(50), 15577, 2003
  23. Roshan KR, Mathai G, Kim J, Tharun J, Park GA, Park DW, Green Chem., 14, 2933, 2012
  24. Coates GW, Moore DR, Angew. Chem.-Int. Edit., 43, 6618, 2004
  25. Peng JJ, Deng Y, New J. Chem., 25, 639, 2001
  26. Lo SH, Chien CH, Lai YL, Yang CC, Lee JJ, Raja DS, Lin CH, J. Mater. Chem. A, 1, 324, 2013
  27. Darensbourg DJ, Fitch SB, Inorg. Chem., 47(24), 11868, 2008
  28. Pescarmona PP, Taherimehr M, Catal. Sci. Technol., 2, 2169, 2012
  29. Lescouet T, Chizallet C, Farrusseng D, ChemCatChem, 4, 1725, 2012
  30. Kim SN, Kim J, Kim HY, Cho HY, Ahn WS, Catal. Today, 204, 85, 2013
  31. Tharun J, Mathai G, Kathalikkattil AC, Roshan R, Won YS, Cho SJ, Chang JS, Park DW, ChemPlusChem, 80, 715, 2015