Issue
Korean Journal of Chemical Engineering,
Vol.35, No.6, 1354-1364, 2018
Organosilicon resin-based carbon/ceramic polygranular composites with improved oxidation resistance
We examined the thermo-mechanical properties of carbon materials modified with silicon oxycarbide (Si- O-C) and silicon carbide (Si-C). These compounds were obtained by the impregnation of carbon components with a silicon-containing polymer resin. Graphite and anthracite powders were used as carbon components, and poly[methyl(phenyl) siloxane] resin (P) was used as the ceramic precursor. Carbon/polymer compositions (C/P) were subjected to twostage annealing, first to 1,000 °C and next to 2,000 °C in an inert atmosphere, leading to the formation of C/Si-O-C and C/Si-C composite samples, respectively. The materials were then examined under conditions of isothermal oxidation to determine their oxidation resistance and the mechanical properties before and after oxidation tests. The structure of the samples before and after oxidation was studied. C/Si-C composites, despite their high porosity, proved to have enhanced resistance to oxidation at 600 °C, although they had lower mechanical properties in comparison to C/Si-O-C samples.
[References]
  1. McKee DW, Fundamental Issues in Control of Carbon Gasification Reactivity, 192, 483 (1991).
  2. Manocha LM, Sadhana, 28, 349, 2003
  3. Sogabe T, Okada O, Kuroda K, Inagaki M, Carbon, 35, 67, 1997
  4. Fitzer G, Manocha LM, Carbon Reinforcement and Carbon/Carbon Composites, 281 (1998).
  5. Wu X, Radovic LR, Carbon, 44, 141, 2006
  6. Isola C, Appendino P, Bosco F, Ferraris M, Salvo M, Carbon, 36, 1213, 1998
  7. Lu W, Chung DDL, Carbon, 40, 1249, 2002
  8. Walter S, Soraru GD, Brequel H, Enzo S, J. European Ceram. Soc., 22, 2389, 2002
  9. Semchenko GD, Shuteeva IY, Slepchenko ON, Angolenko LA, Refractories Industrial Ceramics, 46, 260, 2005
  10. Kowbel W, Withers JC, Ransone PO, Carbon, 33, 415, 1995
  11. Ho CT, Chung DDL, Carbon, 28, 815, 1990
  12. Yoo HI, Kim HS, Hong BG, Sihn IC, Lim KH, Lim BJ, Moon SY, J. European Ceram. Soc., 36, 1581, 2016
  13. Dhami TL, Bahl OP Awasthy BR, Carbon, 33, 479, 1995
  14. Lespade P, Richet N, Goursat P, Acta Astronaut., 60, 858, 2007
  15. Zhu YC, Ohtani S, Sato Y, Iwamoto N, Carbon, 36, 929, 1998
  16. Manocha LM, Manocha S, Patel KB, Glogar P, Carbon, 38, 1481, 2000
  17. Li HJ, Xue H, Wang YJ, Fu QG, Yao DJ, Surf. Coat. Technol., 201, 9444, 2007
  18. Paluszkiewicz C, Gumula T, Podporska J, Blazewicz M, J. Mol. Struct., 792, 176, 2006
  19. Xia K, Lu C, Yang Y, New Carbon Materials, 30, 236, 2015
  20. Weinmann M, Ionescu E, Riedel R, Aldinger F, Advanced Ceramics, 2, 1025, 2013
  21. Schiavon MA, Radovanovic E, Yoshida IVP, Powder Technol., 123(2-3), 232, 2002
  22. Kolar F, Machovic V, Svitilova J, Borecka L, Mater. Chem. Phys., 86(1), 88, 2004
  23. Kwon OS, Hong SH, Kim H, J. European Ceram. Soc., 23, 3119, 2003
  24. Schiavon MA, Redondo SUA, Pina SRO, Yoshida IVP, J. Non-Cryst. Solids, 304, 92, 2002
  25. Duan L, Ma Q, Chen Z, J. European Ceram. Soc., 33, 841, 2013
  26. Gumula T, Paluszkiewicz C, Blazewicz M, J. Mol. Struct., 704, 259, 2004
  27. Xu T, Ma Q, Wang Y, Chen Z, Ceram. Int., 40, 13787, 2014
  28. Li ZQ, Lu CJ, Xia ZP, Zhoh Y, Luo Z, Carbon, 45, 1686, 2007
  29. Gumula T, Paluszkiewicz C, Blazewicz S, J. Anal. Appl. Pyrolysis, 86, 375, 2009
  30. Wu Q, Zhang Q, Zhao L, Li SN, Wu LB, Jiang JX, Tang LC, J. Hazard. Mater., 336, 222, 2017
  31. Guan L, Gao J, Pei Y, Zhao L, Gong L, Wan Y, Zhou Zheng N, Du X, Wu L, Jiang J, Liu H, Tang L, Mai Y, Carbon, 107, 573, 2016
  32. Yang X, Huang Q, Su Z, Chai L, Wang X, Zhou L, Ceram. Int., 39, 5053, 2012
  33. Wang M, Yang L, Yu C, Charles C, Ceram. Int., 38, 2449, 2012