Issue
Korean Journal of Chemical Engineering,
Vol.35, No.6, 1335-1340, 2018
Equilibrium solubility of CO2 in aqueous binary mixture of 2-(diethylamine)ethanol
CO2 solubility data are important for the efficient design and operation of the acid gas CO2 capture process using aqueous amine mixture. 2-(Diethylamino)ethanol (DEEA) solvent can be manufactured from renewable sources like agricultural products/residue, and 1,6-hexamethyldiamine (HMDA) solvents have higher absorption capacity as well as reaction rate with CO2 than conventional amine.based solvents. The equilibrium solubility of CO2 into aqueous binary mixture of DEEA and HMDA was investigated in the temperature range of 303.13-333.13 K and inlet CO2 partial pressure in the range of 10.133-20.265 kPa. Total concentration of aqueous amine mixtures in the range of 1.0-3.0 kmol/m3 and mole fraction of HMDA in total amine mixture in the range of 0.05-0.20 were taken in this work. CO2 absorption experiment was performed using semi-batch operated laboratory scale bubble column to measure equilibrium solubility of CO2 in amine mixture, and CO2 absorbed amount in saturated carbonated amine mixture was analyzed by precipitation-titration method using BaCl2. Maximum equilibrium CO2 solubility in aqueous amine mixture was observed at 0.2 of HMDA mole fraction in total amine mixture with 1.0 kmol/m3 total amine concentration. New solubility data of CO2 in DEEA+HMDA aqueous mixtures in the current study was compared with solubility data available in previous studies conducted by various researchers. The study shows that the new absorbent as a mixture of DEEA+HMDA is feasible for CO2 removal from coal-fired power plant stack gas streams.
[References]
  1. Adams D, Davison J, IEA, Greenhouse Gas R&D Programme (2007).
  2. Zaman M, Lee JH, Korean J. Chem. Eng., 30(8), 1497, 2013
  3. Rao AB, Rubin ES, Environ. Sci. Technol., 36, 4467, 2002
  4. Kohl AL, Nielsen RB, Gas Purification, 5th Ed., Gulf Publishing, Houston (1997).
  5. Bishnoi S, Rochelle GT, Chem. Eng. Sci., 55(22), 5531, 2000
  6. Choi JH, Kim YE, Nam SC, Yun SH, Yoon YI, Lee JH, Korean J. Chem. Eng., 33(11), 3222, 2016
  7. Mondal BK, Bandyopadhyay SS, Samanta AN, Int. J. Green H. Gas Con., 56, 116, 2017
  8. Wilk A, Wieclaw-Solny L, Tatarczuk A, Krotki A, Spietz T, Chwoła T, Korean J. Chem. Eng., 34(8), 2275, 2017
  9. Chowdhury FA, Yamada H, Higashii T, Goto K, Onoda M, Ind. Eng. Chem. Res., 52(24), 8323, 2013
  10. Vaidya PD, Kenig EY, Chem. Eng. Sci., 62(24), 7344, 2007
  11. Muchan P, Narku-Tetteh J, Saiwan C, Idem R, Supap T, Sep. Purif. Technol., 184, 128, 2017
  12. Kim YE, Yun SH, Choi JH, Nam SC, Park SY, Jeong SK, Yoon YI, Energy Fuels, 29(4), 2582, 2015
  13. Mondal BK, Bandyopadhyay SS, Samanta AN, Fluid Phase Equilib., 402, 102, 2015
  14. Liebenthal U, Pinto DDD, Monteiro JGMS, Svendsen HF, Kather A, Energy Procedia, 37, 1844, 2013
  15. Vaidya PD, Kenig EY, Ind. Eng. Chem. Res., 47(1), 34, 2008
  16. Konduru PB, Vaidya PD, Kenig EY, Environ. Sci. Technol., 44, 2138, 2010
  17. Fu D, Wang L, Mi C, Zhang PJ, Chem. Thermodyn., 101, 123, 2016
  18. Xu ZC, Wang SJ, Chen CH, Ind. Eng. Chem. Res., 52(29), 9790, 2013
  19. Sutar PN, Vaidya PD, Kenig EY, Chem. Eng. Sci., 100, 234, 2013
  20. Gao HX, Xu B, Liu HL, Liang ZW, Energy Fuels, 30(9), 7481, 2016
  21. Wang L, An S, Yu S, Zhang S, Zhang Y, Li M, Li Q, Int. J. Green H. Gas Con., 64, 276, 2017
  22. Lee J, Hong YK, You JK, Korean J. Chem. Eng., 34(6), 1840, 2017
  23. Mondal MK, J. Chem. Eng. Data, 54(9), 2381, 2009
  24. Bajpai A, Mondal MK, J. Chem. Eng. Data, 58(6), 1490, 2013
  25. Kundu M, Bandyopadhyay SS, Fluid Phase Equilib., 248(2), 158, 2006
  26. Luo X, Liu S, Gao HX, Liao HY, Tontiwachwuthikul P, Liang ZW, Sep. Purif. Technol., 169, 279, 2016
  27. Ali BS, Aroua MK, Int. J. Thermophys., 25, 1863, 2004
  28. Arshad MW, Svendsen HF, Fosbol PL, von Solms N, Thomsen K, J. Chem. Eng. Data, 59(3), 764, 2014