Issue
Korean Journal of Chemical Engineering,
Vol.35, No.6, 1312-1318, 2018
Efficient conversion of fructose to 5-[(formyloxy)methyl]furfural by reactive extraction and in-situ esterification
5-[(Formyloxy)methyl]furfural (FMF), an analogue of 5-(hydroxymethyl)furfural (HMF) is becoming more attractive due to its superior stability and hydrophobicity, which make it easier to refineand store. In the present study, FMF was produced from fructose by one-pot approach in pure formic acid media or by a two-step approach via HMF in choline chloride (ChCl)/fructose deep eutectic solvents (DES) system. A favorable FMF yield of 63.22% was reached by two-step approach. In addition, the effects of reaction parameters, such as temperature and acidity, on preparation of FMF from fructose were systematically investigated. The dehydration of fructose into HMF was confirmed as the rate-controlling step in the consecutive reaction. Ultimately, the separation and purification procedures of FMF were put forward. The FMF with a purity of 98.8% was obtained finally. Meanwhile, the FMF purified by saturated sodium bicarbonate solution showed an excelled storage stability.
[References]
  1. Naik SN, Goud Rout PK, Dalai AK, Renew. Sust. Energ. Rev., 14, 578, 2010
  2. Nakagawa Y, Tamura M, Tomishige K, ACS Catal., 3, 2655, 2013
  3. Bozell JJ, Petersen GR, Green Chem., 12, 539, 2010
  4. van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG, Chem. Rev., 113(3), 1499, 2013
  5. Esmaeili N, Zohuriaan-Mehr MJ, Bouhendi H, Bagheri-Marandi G, Korean J. Chem. Eng., 33(6), 1964, 2016
  6. Zhang Z, Wang Q, Xie H, Liu W, Zhao ZK, ChemSusChem, 4, 131, 2011
  7. Zhao H, Holladay JE, Brown H, Zhang ZC, Science, 316, 1597, 2007
  8. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK, J. Am. Chem. Soc., 126(29), 9142, 2004
  9. Vigier KDO, Chatel G, Jerome F, ChemCatChem, 7, 1250, 2015
  10. Tang W, Liu L, Li G, Zhu T, Row KH, Korean J. Chem. Eng., 34, 814, 2016
  11. Ilgen W, Ott D, Kralisch D, Reil C, Palmberger A, Konig B, Green Chem., 11, 1948, 2009
  12. Zhao Q, Sun Z, Wang S, Huang G, Wang X, Jiang Z, RSC Adv., 4, 63055, 2014
  13. Liu F, Barrault J, Vigier KDO, Jerome F, ChemSusChem, 5, 1223, 2012
  14. Li C, Zhao ZK, Wang A, Zheng M, Zhang T, Carbohydr. Res., 345, 1846, 2010
  15. Jiang YT, Chen W, Sun Y, Li Z, Tang X, Zeng XH, Lin L, Liu SJ, Ind. Crop. Prod., 83, 408, 2016
  16. Du Z, Ma J, Wang F, Liu J, Xu J, Green Chem., 13, 554, 2011
  17. Grasset FL, Katryniok B, Paul S, Nardello-Rataj V, Pera-Titus M, Clacens JM, De Campo F, Dumeignil F, RSC Adv., 3, 9942, 2013
  18. Thananatthanachon T, Rauchfuss TB, Angew. Chem.-Int. Edit., 49, 6616, 2010
  19. De S, Dutta S, Saha B, ChemSusChem, 5, 1826, 2012
  20. Zhou X, Rauchfuss TB, ChemSusChem, 6, 383, 2013
  21. Kang ES, Hong YW, Chae DW, Kim B, Kim B, Kim YJ, Cho JK, Kim YG, ChemSusChem, 8, 1179, 2015
  22. Sun Y, Lin L, J. Agric. Food Chem., 58, 2253, 2010
  23. Wrigstedt P, Keskivali J, Leskela M, Repo T, ChemCatChem, 7, 501, 2015
  24. Girisuta B, Janssen L, Heeres HJ, Green Chem., 8, 701, 2006
  25. Van Dam HE, Kieboom APG, van Bekkum H, Starch-Starke, 38, 95, 1986
  26. Asghari FS, Yoshida H, Ind. Eng. Chem. Res., 46(23), 7703, 2007
  27. Zuo M, Le K, Li Z, Jiang Y, Zeng X, Tang X, Sun Y, Lin L, Ind. Crop. Prod., 99, 1, 2017