Issue
Korean Journal of Chemical Engineering,
Vol.35, No.6, 1297-1302, 2018
His-tagged protein immobilization on cationic ferrite magnetic nanoparticles
Magnetic nanoparticles have been applied in various fields because of their interesting magnetic properties. Immobilization on magnetic nanoparticles is a very important step in functionalizing them. We examined protein immobilization efficiency using interactions between his-tagged enhanced green fluorescence protein and affordable cationic ferrite magnetic nanoparticles for the first time. Four types of ferrite magnetic nanoparticles were verified: cobalt iron oxide, copper iron oxide, nickel iron oxide, and iron (III) oxide as negative controls. Among the four ferrite magnetic nanoparticles, copper ferrite magnetic nanoparticle was confirmed to have the highest immobilization efficiency at 3.0mg proteins per gram ferrite magnetic nanoparticle and 78% of total enhanced green fluorescence protein. In addition, the maximum binding efficiency was determined for copper ferrite magnetic nanoparticle. Consequently, this newly verified his-tag-immobilizing capacity of copper ferrite magnetic nanoparticle could provide a facile, capable, and promising strategy for immobilizing his-tagged proteins or peptides with high purity for biosensors, magnetic separation, or diagnostics.
[References]
  1. Li XM, Wei JR, Aifantis KE, Fan YB, Feng QL, Cui FZ, Watari F, J. Biomed. Mater. Res. A, 104, 1285, 2016
  2. Lee IS, Lee N, Park J, Kim BH, Yi YW, Kim T, Kim TK, Lee IH, Paik SR, Hyeon T, J. Am. Chem. Soc., 128(33), 10658, 2006
  3. Gu JL, Tong HF, Sun LY, Biotechnol. Bioproc. E,, 22, 76, 2017
  4. El-Sherbiny IM, Elbaz NM, Sedki M, Elgammal A, Yacoub MH, Nanomedicine, 12, 387, 2017
  5. Sun C, Lee JS, Zhang M, Adv. Drug. Deliv. Rev., 60, 1252, 2008
  6. Fortin JP, Wilhelm C, Servais J, Menager C, Bacri JC, Gazeau F, J. Am. Chem. Soc., 129(9), 2628, 2007
  7. Lu AH, Salabas EL, Schuth F, Angew. Chem.-Int. Edit., 46, 1222, 2007
  8. Xu J, Sun J, Wang Y,Sheng J, Wang F, Sun M, Molecules, 19, 11465, 2014
  9. Xu CJ, Xu KM, Gu HW, Zheng RK, Liu H, Zhang XX, Guo ZH, Xu B, J. Am. Chem. Soc., 126(32), 9938, 2004
  10. Park HY, Schadt MJ, Wang L, Lim IIS, Njoki PN, Kim SH, Jang MY, Luo J, Zhong CJ, Langmuir, 23(17), 9050, 2007
  11. Wang W, Xu Y, Wang DIC, Li Z, J. Am. Chem. Soc., 131(36), 12892, 2009
  12. Xu CJ, Xu KM, Gu HW, Zhong XF, Guo ZH, Zheng RK, Zhang XX, Xu B, J. Am. Chem. Soc., 126(11), 3392, 2004
  13. Yang JB, Ni KF, Wei DZ, Ren YH, Biotechnol. Bioproc. E., 20, 901, 2015
  14. Rashid Z, Naeimi H, Zarnani AH, Mohammadi F, Ghahremanzadeh R, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 80, 670, 2017
  15. Zhou Y, Yuan SF, Liu Q, Yang DD, Wang Y, Gao L, Hang J, Shi HF, Sci. Rep.-Uk, 7, 41741, 2017
  16. Lee J, Chang JH, Nanoscale Res. Lett., 9, 647, 2014
  17. Kobayashi T, Morone N, Kashiyama T, Oyamada H, Kurebayashi N, Murayama T, PLoS One, 3, e3822, 2008
  18. Bradford MM, Anal. Biochem., 72, 248, 1976
  19. Balint EE, Petres J, Szabo M, Orban CK, Szilagyi L, Abraham B, J. Fluoresc., 23, 273, 2013
  20. Gaberc-Porekar V, Menart V, J. Biochem. Biophys. Methods, 49, 335, 2001
  21. Ueda EK, Gout PW, Morganti L, J. Chromatogr. A, 988, 1, 2003
  22. Bornhorst JA, Falke JJ, Methods Enzymol., 326, 245, 2000
  23. Arnau J, Lauritzen C, Petersen GE, Pedersen J, Protein Expres. Purif., 48, 1, 2006
  24. Nabiyouni G, Fesharaki MJ, Mozafari M, Amighian J, Chin. Phys. Lett., 27, 126401, 2010
  25. Venkatesan K, Babu DR, Bai MPK, Supriya R, Vidya R, Madeswaran S, Anandan P, Arivanandhan M, Hayakawa Y, Int. J. Nanomedicine, 10 Supp, 189, 2015
  26. Liu BL, Fu YP, Wang ML, J. Nanosci. Nanotechnol., 9, 1491, 2009