Issue
Korean Journal of Chemical Engineering,
Vol.35, No.6, 1290-1296, 2018
Valorization of chitosan into levulinic acid by hydrothermal catalytic conversion with methanesulfonic acid
As a potential renewable aquatic resource, chitosan is the second most abundant biopolymer. Methanesulfonic acid is a catalyst that is strongly acidic and biodegradable. We used chitosan and methanesulfonic acid to produce platform chemicals via an acid-catalyzed hydrothermal reaction. In the methanesulfonic acid-catalyzed hydrothermal conversion of chitosan, an optimal levulinic acid yield of 28.21±1.20% was achieved under the following conditions: 2% chitosan and 0.2M methanesulfonic acid at 200 °C for 30 min. These results indicated that a combination of chitosan and methanesulfonic acid would be suitable for platform chemical production.
[References]
  1. Zang H, Yu S, Yu P, Ding H, Du Y, Yang Y, Zhang Y, Carbohydr. Res., 442, 1, 2017
  2. Osatiashtiani A, Lee AF, Brown DR, Melerom JA, Morales G, Wilson K, Catal. Sci. Technol., 4, 333, 2014
  3. Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2010).
  4. Bozell JJ, Petersen GR, Green Chem., 12, 539, 2010
  5. Nguyen TH, Ra CH, Sunwoo YI, Jeong GT, Kim SK, J. Microbiol. Biotechnol., 26, 1264, 2016
  6. Mukherjee A, Dumont MJ, Raghauan V, Biomass Bioenerg., 72, 143, 2015
  7. Morone A, Apte M, Pandey RA, Renew. Sust. Energ. Rev., 51, 548, 2015
  8. Jeong GT, Ind. Crop. Prod., 62, 77, 2014
  9. Lee SB, Jeong GT, Appl. Biochem. Biotechnol., 176(4), 1151, 2015
  10. Omari KW, Besaw JE, Kerton FM, Green Chem., 14, 1480, 2012
  11. Wang YX, Pedersen CM, Deng TS, Qiao Y, Hou XL, Bioresour. Technol., 143, 384, 2013
  12. Lee SB, Kim SK, Hong YK, Jeong GT, Algal Res., 13, 303, 2016
  13. Antonetti C, Licursi D, Fulignati S, Valentinif G, Galletti AMR, Catalysts, 6, 196, 2016
  14. Pileidis FD, Titirici MM, ChemSusChem, 9, 562, 2016
  15. Yan K, Wu G, Lafleur T, Jarvis C, Sustain. Energy Rev., 38, 663, 2014
  16. Son PA, Nishimura S, Ebitani KK, React. Kinet. Mech. Catal., 106, 185, 2012
  17. Weingarten R, Conner WC, Huber GW, Energy Environ. Sci., 5, 7559, 2012
  18. Ya'aini N, Amin NAS, Asmadi M, Bioresour. Technol., 116, 58, 2012
  19. Kim SK, Chitin, Chitosan, Oligosaccharides and Their Derivatives: Biological Activities and Applications, CRC Press, New York (2011).
  20. Mackay RG, Tait JM, Handbook of chitosan research and applications, Nova Science Publishers, Inc., New York (2012).
  21. Shahidi F, Arachchi JKV, Jeon YJ, Trends Food Sci. Technol., 10, 37, 1999
  22. Yan N, Chen X, Nature, 524(7564), 155, 2015
  23. Kerton FM, Liu Y, Omari KW, Hawboldt K, Green Chem., 15, 860, 2013
  24. Kim SK, Rajapakse N, Carbohydr. Polym., 62, 357, 2005
  25. Food and Agriculture Organization of the United States, The State of World Fisheries and Aquaculture 2014, 2014; http://www.fao.org/3/a-i3720e.pdf (Retrieved on Jan. 2, 2018).
  26. Chen X, Yang H, Yan N, Chem. Eur. J., 22, 13402, 2016
  27. Park MR, Kim SK, Jeong GT, J. Ind. Eng. Chem., 61, 119, 2018
  28. Drover MW, Omari KW, Murphy JN, Kerton FM, RSC Adv., 2, 4642, 2012
  29. Osada M, Kikuta K, Yoshida K, Totani K, Ogata M, Usui T, Green Chem., 15, 2960, 2013
  30. Gao X, Chen X, Zhang J, Guo W, Jin F, Yan N, ACS Sustainable Chem. Eng., 4, 3912, 2016
  31. Ohmi Y, Nishimura S, Ebitani K, ChemSusChem, 6, 2259, 2013
  32. Yoon JH, Enzyme Microb. Technol., 37(6), 663, 2005
  33. Bobbink FD, Zhang J, Pierson Y, Chen X, Yan N, Green Chem., 17, 1024, 2015
  34. Zeng L, Qin C, Wang L, Li W, Carbohydr. Polym., 83, 1553, 2011
  35. Omari K, Dodot L, Kerton FM, ChemSusChem, 5, 1767, 2012
  36. Rackemann DW, Bartley JP, Doherty WOS, Ind. Crop. Prod., 52, 46, 2014
  37. Rackemann DW, Bartley JP, Harrison MD, Doherty WOS, RSC Adv., 6, 74525, 2016
  38. Mthembu LD, Production of levulinic acid from sugarcane bagasse, Durban University of Technology, Durban, South Africa. Master’s Thesis (2015).
  39. Pedersen M, Meyer AS, New Biotechnol., 27, 739, 2010
  40. Kwon OM, Kim DH, Kim SK, Jeong GT, Algal Res., 13, 293, 2016
  41. Yu S, Zang H, Chen S, Jiang Y, Yan B, Cheng B, Polym. Degrad. Stabil., 134, 105, 2016
  42. Kuster BFM, Starch, 42, 314, 1990
  43. Jeong GT, Park DH, Appl. Biochem. Biotechnol., 161(1-8), 41, 2010
  44. Baker SC, Kelly DP, Murrell JC, Nature, 350, 627, 1991
  45. Jeong GT, Kim SK, Park DH, Biotechnol. Bioprocess Eng., 18, 88, 2013
  46. Lewkowski J, ARKIVOC, 1, 17, 2001
  47. Patil SKR, Lund CRF, Energy Fuels, 25(10), 4745, 2011
  48. Yu S, Brown HM, Huang XW, Zhou XD, Amonette JE, Zhang ZC, Appl. Catal. A: Gen., 361(1-2), 117, 2009