Issue
Korean Journal of Chemical Engineering,
Vol.35, No.6, 1274-1280, 2018
Bioactivity kinetics of organic matter biodegradation and nitrification
Biodegradation of organic matter and nitrification of ammonia nitrogen was studied by measuring the electron transport system (ETS) activity in activated sludge. The feasibility of characterizing the bioactivity of activated sludge based on the ETS was discussed. Then, bioactivity kinetics for the biodegradation and nitrification of organic matter was analyzed using the Michaelis.Menten equation. The results indicated that the ETS activity of activated sludge reflects the progression of organic matter biodegradation and nitrification of ammonia nitrogen; moreover, ETS activity is sensitive to the loading of organic matter and ammonia nitrogen and also to changes in alkalinity during the reaction. Therefore, it is feasible to characterize the bioactivity of an activated sludge system with ETS activity. The Michaelis constant for organic matter biodegradation was KTs=368.9mg/L; UTm=90.9mgTF/(gTss·h); KIs=88.42mg/L; and UIm=277.8mgINTF/(gTss·h); for the nitrification of ammonia nitrogen, the Michaelis constant was KTs=16.89 mg/L; UTm=34.6mgTF/(gTss·h); KIs=6.0mg/L; and UIm=196.08mgINTF/(gTss·h). Additional analyses of bioactivity kinetics confirmed that the organic matter oxidation rate of heterotrophic bacteria was higher than that of autotrophic nitrifying bacteria.
[References]
  1. Jorgensen KP, J. WPCF, 56, 89, 1984
  2. Anupama VN, Amrutha PN, Chitra GS, Krishnakumar B, Water Res., 42, 2796, 2008
  3. JT, Water Res., 18, 581, 1984
  4. Yun YM, Cho SK, Kim HW, Jung KW, Shin HS, Kim DH, Korean J. Chem. Eng., 32(8), 1542, 2015
  5. Schmid A, Environ. Sci. Pollut. Res., 9, 227, 2002
  6. Mohammed RN, Arab S, Xiwu L, Korean J. Chem. Eng., 30(11), 2043, 2013
  7. Yin J, Tan XJ, Ren NQ, Environ. Sci., 26, 56, 2005
  8. Peng YZ, Gao JF, Wang SY, Water Sci. Technol., 46, 131, 2002
  9. Chen MJ, Jiang JY, Zhou YX, Res. Environ. Sci., 23, 340, 2010
  10. Tang XX, Ma B, Xu ZB, J. Chem. Ind. Eng., 63, 3666, 2012
  11. Campos JL, Mosquera-Corral A, Sanchez M, Mendez R, Lema JM, Water Res., 36, 2555, 2002
  12. Dziurla MA, Salhi M, Leroy P, Paul E, Ginestet P, Block JC, Water Res., 39, 2591, 2005
  13. McNicholl BP, McGrath JW, Quinn JP, Water Res., 41, 127, 2007
  14. Huang JS, Wu CS, Chen CM, Chemosphere, 61, 1032, 2005
  15. Chu LB, Wang JL, Wang B, Xing XH, Yan ST, Sun XL, Chemosphere, 77, 269, 2009
  16. Li Y, Chrost RJ, Enzyme Microbial Technol., 39, 568, 2006
  17. Aragon C, Coello MD, Quiroga JM, Chem. Eng. Res. Des., 88(5-6A), 641, 2010
  18. Packard TT, Healy ML, J. Marine Res., 26, 66, 1968
  19. Jaag O, Adv. Water Pollution Res., Elsevier Ltd., Tokyo (1964).
  20. Southgate BA, Adv. Water Pollution Res., Elsevier Ltd., London (1962).
  21. Klapwijk A, Drent J, Steenvoorden JHAM, Water Res., 8, 121, 1974
  22. Fahmy AR, O’F Walsh E, Biochem. J., 51, 55, 1952
  23. Campos JL, Garrido-Fernandez J, Mendez R, Lema JM, Bioresour. Technol., 68(2), 141, 1999
  24. Wang FF, Ding YH, Ge L, Ren HQ, Ding LL, J. Environ. Sci., 22, 1683, 2010
  25. Wu J, Yan G, Zhou GJ, Xu T, J. Environ. Chem. Eng., 2, 1899, 2014
  26. Yan YY, Feng LY, Zhang CJ, Zhu HG, Zhou Q, African J. Biotechnol., 9, 1776, 2010
  27. Huang JS, Chou HH, Chen CM, Chiang CM, Chemosphere, 68, 382, 2007
  28. Wang XF, Method for Monitoring and Analyzing Water and Waste Water, China Environmental Science Press Pub., Beijing (2002).
  29. Ding Y, Wang DB, Li XM, Yang Q, Zeng GM, China Environ. Sci., 30, 333, 2010
  30. Gao JF, Peng YZ, Wang SY, Acta Scientiae Circumstantiae, 23, 733, 2003
  31. Wang JH, Yin J, Lu H, J. Chem. Ind. Eng., 63, 2234, 2012
  32. Li S, Sun YB, Feng JW, Acta Scientiae Circumstantiae, 28, 1074, 2008