Issue
Korean Journal of Chemical Engineering,
Vol.35, No.6, 1257-1262, 2018
Effect of solid residence time on CO2 selectivity in a semi-continuous chemical looping combustor
Chemical looping combustion (CLC) is a promising technology for fossil fuel combustion with inherent CO2 capture and sequestration, which is able to mitigate greenhouse gases (GHGs) emission. In this study, to design a 0.5MWth pressurized chemical looping combustor for natural gas and syngas the effects of solid residences time on CO2 selectivity were investigated in a novel semi-continuous CLC reactor using Ni-based oxygen carrier particle. The semi-continuous chemical looping combustor was designed to simulate the fuel reactor of the continuous chemical looping combustor. It consists of an upper hopper, a screw conveyor, a fluidized bed reactor, and a lower hopper. Solid circulation rate (Gs) was controlled by adjusting the rotational speed of the screw conveyor. The measured solid circulation rate increased linearly as the rotational speed of the screw increased and showed almost the same values regardless of temperature and fluidization velocity up to 800 °C and 4 Umf, respectively. The solid circulation rate required to achieve 100% CH4 conversion was varied to change Gs-fuel ratio (oxygen carrier feeding rate/fuel feeding rate, kg/ Nm3). The measured CO2 selectivity was greater than 98% when the Gs-fuel ratio was higher than 78 kg/Nm3.
[References]
  1. Gralla F, Abson DJ, Moller AP, Lang DJ, von Wehrden H, Renew. Sust. Energ. Rev., 70, 1251, 2017
  2. Lee CT, Hashim H, Ho CS, Fan YV, Klemes JJ, J. Clean Prod., 146, 1, 2017
  3. Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego LF, Prog. Energy Combust. Sci., 38(2), 215, 2012
  4. Tang MC, Xu L, Fan MH, Appl. Energy, 151, 143, 2015
  5. Nandy A, Loha C, Gu S, Sarkar P, Karmakar MK, Chatterjee PK, Renew. Sust. Energ. Rev., 59, 597, 2016
  6. Borhani TNG, Azarpour A, Akbari V, Alwi SRW, Manan ZA, Int. J. Greenh Gas Con., 41, 142, 2015
  7. Anthony B, Hoteit A, Handbook of Combustion, Wiley-VCH, 5, 517 (2010).
  8. Lyngfelt A, Appl. Energy, 113, 1869, 2014
  9. ISHIDA M, JIN HG, Energy, 19(4), 415, 1994
  10. Jin H, Okamoto T, Ishida M, Energy Fuels, 12(6), 1272, 1998
  11. Ishida M, Zheng D, Akehata T, Energy, 12, 147, 1987
  12. Fu C, Gundersen T, Energy, 44(1), 60, 2012
  13. Hossain MM, de Lasa HI, Chem. Eng. Sci., 63(18), 4433, 2008
  14. Adanez J, de Diego LF, Garcia-Labiano F, Gayan P, Abad A, Palacios JM, Energy Fuels, 18(2), 371, 2004
  15. Abad A, Mattisson T, Lyngfelt A, Johansson M, Fuel, 86(7-8), 1021, 2007
  16. Tian M, Wang CJ, Li L, Wang XD, AIChE J., 63(7), 2827, 2017
  17. Garcia-Labiano F, de Diego LF, Adanez J, Abad A, Gayan P, Ind. Eng. Chem. Res., 43(26), 8168, 2004
  18. Ryu HJ, Bae DH, Han KH, Lee SY, Jin GT, Choi JH, Korean J. Chem. Eng., 18(6), 831, 2001
  19. Go KS, Son SR, Kim SD, Int. J. Hydrog. Energy, 33(21), 5986, 2008
  20. Bhavsar S, Isenberg N, More A, Veser G, Appl. Energy, 168, 236, 2016
  21. Tian M, Wang XD, Liu X, Wang AQ, Zhang T, AIChE J., 62(3), 792, 2016
  22. Kwak BS, Park NK, Baek JI, Ryu HJ, Kang MS, Korean J. Chem. Eng., 34(7), 1936, 2017
  23. Naqvi R, Bolland O, Int. J. Greenh Gas Con., 1, 19, 2007
  24. Erlach B, Schmidt M, Tsatsaronis G, Energy, 36(6), 3804, 2011
  25. Zerobin F, Penthor S, Bertsch O, Proll T, Powder Technol., 316, 569, 2017
  26. Lu X, Rahman RA, Lu DY, Ridha FN, Duchesne MA, Tan Y, Hughes RW, Appl. Energy, 184, 132, 2016
  27. Ryu HJ, Bae DH, Jin GT, Korean J. Chem. Eng., 20(5), 960, 2003
  28. Ryu HJ, Jin GT, Jo SH, Park MH, J. Chem. Eng. Jpn., 41(7), 716, 2008
  29. Ryu H, Jin G, Bae D, Park M, Continuous Long-term Operation of Syngasfueled 50kWth Chemical-Looping Combustor, 16 (2008).
  30. Ryu HJ, Jin GT, Energy Eng. J., 12, 289, 2003
  31. Ryu H, Lee D, Jang M, Kim J, Baek JI, Transactions of the Korean Hydrogen and New Energy Society, 27, 201 (2016).
  32. Baek JI, Ryu CK, Lee JH, Eom TH, Lee JB, Ryu HJ, Ryu J, Yi J, Fuel, 102, 106, 2012
  33. Goo JH, Seo MW, Park DK, Kim SD, Lee SH, Lee JG, Song BH, J. Chem. Eng. Jpn., 41(7), 686, 2008
  34. Lyngfelt A, Leckner B, Appl. Energy, 157, 475, 2015