Issue
Korean Journal of Chemical Engineering,
Vol.35, No.5, 1174-1184, 2018
Thin film graphene oxide membrane: Challenges and gas separation potential
Graphene oxide membranes were prepared by vacuum and pressurized ultrafiltration methods on the 12% modified Polyacrylonitrile (12mPAN) substrate to specify challenges, salient features, future directions, and potential of GO membrane for separation fields using characterization techniques and gas separation test (studied gases are CO2, He and N2), which is an efficient tool for better understanding of GO membrane behavior. GO membrane structure was examined over a wide range of parameters, such as pore size range of substrate and its surface properties, pH of GO dispersion, GO content, synthesis pressure, operating pressure and temperature. The results show that the GO content does not hold a linear relationship with the permeance and selectivity. Film thickness, aggregates, synthesis pressure defects and interlayer spacing have significant effects on the gas separation performance of GO membranes which originate from the synthesis method and its conditions.
[References]
  1. Ha H, John EC, Korean J. Chem. Eng., 35, 1, 2017
  2. Li X, Li F, Fang L, Korean J. Chem. Eng., 32(12), 2449, 2015
  3. Jia W, Lu S, Korean J. Chem. Eng., 31(7), 1265, 2014
  4. Nguyen-Phan TD, Pham VH, Yun H, Kim EJ, Hur SH, Chung JS, Shin EW, Korean J. Chem. Eng., 28(12), 2236, 2011
  5. Baskey M, Ghosh S, Korean J. Chem. Eng., 34(7), 2079, 2017
  6. Gao W, Majumder M, Alemany LB, Narayanan TN, Ibarra MA, Pradhan BK, Ajayan PM, ACS Appl. Mater. Interfaces, 3, 1821, 2011
  7. Choi W, Choi J, Bang J, Lee JH, ACS Appl. Mater. Interfaces, 5, 12510, 2013
  8. Safarpour M, Khataee A, Vatanpour V, J. Membr. Sci., 489, 43, 2015
  9. Chae HR, Lee J, Lee CH, Kim IC, Park PK, J. Membr. Sci., 483, 128, 2015
  10. Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK, Science, 335(6067), 442, 2012
  11. Joshi RK, Carbone P, Wang FC, Kravets VG, Su Y, Grigorieva IV, Wu HA, Geim AK, Nair RR, Science, 343(6172), 752, 2014
  12. Vatsha B, Ngila JC, Moutloali R, J. Membr. Sep. Technol., 4, 98, 2015
  13. Smith ZP, Freeman BD, Angewandte Chemie International Ed., 53, 10286, 2014
  14. Moochani M, Moghadassi A, Hosseini SM, Bagheripour E, Parvizian F, Korean J. Chem. Eng., 33(9), 2674, 2016
  15. Tang YP, Paul DR, Chung TS, J. Membr. Sci., 458, 199, 2014
  16. Kim HW, Yoon HW, Yoon SM, Yoo BM, Ahn BK, Cho YH, Shin HJ, Yang H, Paik U, Kwon S, Choi JY, Park HB, Science, 342(6154), 91, 2013
  17. Li H, Song ZN, Zhang XJ, Huang Y, Li SG, Mao YT, Ploehn HJ, Bao Y, Yu M, Science, 342(6154), 95, 2013
  18. Sun P, Zhu M, Wang K, Zhong M, Wei J, Wu D, Xu Z, Zhu H, ACS Nano, 7, 428, 2012
  19. Zhao X, Su Y, Liu Y, Li Y, Jiang Z, ACS Appl. Mater. Interfaces, 8, 8247, 2016
  20. Wang J, Zhang P, Liang B, Liu Y, Xu T, Wang L, Cao B, Pan K, ACS Appl. Mater. Interfaces, 8, 6211, 2016
  21. Sun PZ, Wang KL, Zhu HW, Adv. Mater., 28(12), 2287, 2016
  22. Liu G, Jin W, Xu N, Angewandte Chemie International Ed., 55, 13384, 2016
  23. Cote LJ, Kim F, Huang J, J. Am. Chem. Soc., 131, 1043, 2008
  24. Mulder M, Basic principle of membrane technology, 2nd Ed., Kluwer Academic (1997).
  25. Yampol'skii YP, Freeman B, Membrane gas separation, Wiley Online Library, 34 (2010).
  26. Albrecht E, Baum G, Bellunato T, et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 510, 262 (2003).