Issue
Korean Journal of Chemical Engineering,
Vol.35, No.5, 1151-1166, 2018
Separation performance investigation of packed distillation columns using simple NEQ approach based on packing multicomponent efficiencies and effective mass transfer coefficients
A simple non-equilibrium modeling approach is proposed to simulate multicomponent distillation process in packed columns. The real behavior of the column is simply considered by the evaluation of interphase mass transfer rate based on the overall mass transfer coefficient. Two distinct methods are used to calculate this overall coefficient including the effective mass transfer coefficient method and the packing efficiency method. The modelling procedure consists of an iterative segment-wise algorithm implemented in a MATLAB home-code. For verification, the obtained composition profiles from a structured and a random packed column are compared with reported experimental data. Comparisons show that the packing efficiency-based model could acceptably predict the experimental profiles with an average relative deviation of 18% and 25% for structured and random packed columns, respectively. This confirms that our simple non-equilibrium approach is a reliable and robust model for the performance evaluation of packed columns.
[References]
  1. Niggemann G, Gruetzmann S, Fieg G, in Institution of Chemical Chemical Engineers Symposium Series, 152, 800 (2006).
  2. Cordeiro GM, Dantas SR, Vasconcelos LGS, Brito RP, Adv. Chem. Eng. Sci., 3, 1, 2013
  3. Seader J, Henley EJ, Keith D, Separation process principles: Chemical and biochemical operations, Hoboken, NJ, Wiley (2011).
  4. Lee YS, Kim MG, Ha DM, Oda A, Ito C, Aragaki T, Mori H, Korean J. Chem. Eng., 14(5), 321, 1997
  5. Amini Y, Karimi-Sabet J, Esfahany MN, Chem. Eng. Technol., 40(3), 581, 2017
  6. Halvorsen IJ, Skogestad S, J. Nat. Gas Sci. Eng., 3, 571, 2011
  7. Chaves IDG, Lopez JRG, Zapata JLG, Robayo AL, Nino GR, Process analysis and simulation in chemical engineering, Springer (2016).
  8. Taylor R, Krishna R, Kooijman H, Chem. Eng. Prog., 99(7), 28, 2003
  9. Baur R, Higler AP, Taylor R, Krishna R, Chem. Eng. J., 76(1), 33, 2000
  10. Mendes MF, Hetp evaluation of structured and randomic packing distillation column, INTECH Open Access Publisher (2011).
  11. Gorak A, Vogelpohl A, Sep. Sci. Technol., 20, 33, 1985
  12. Skowlund C, Hlavinka M, Lopez M, Fitz C, in Proceedings of Gas Processesors Association (2012).
  13. Mosorinac TN, Djurovic JJ, Savkovic-Stevanovic JB, Petroleum Coal, 53, 194, 2011
  14. Krishnamurthy R, Taylor R, Ind. Eng. Chem. Process Des. Dev., 24, 513, 1985
  15. Taylor R, Krishna R, Multicomponent mass transfer, Wiley (1993).
  16. Krishnamurthy R, Taylor R, AIChE J., 31, 449, 1985
  17. Krishnamurthy R, Taylor R, AIChE J., 31, 456, 1985
  18. Krishnamurthy R, Taylor R, AIChE J., 31, 1973, 1985
  19. Aittamaa J, Kemi, 8, 295, 1981
  20. Ilme J, Estimating plate efficiencies in simulation of industrial scale distillation columns, Lappeenranta University of Technology (1997).
  21. Klemola KT , Efficiencies in distillation and reactive distillation, Finnish Academy of Technology (1998).
  22. Jakobsson K, Aittamaa J, Comparison of plate efficiency estimation models to experimental results of pilot scale: A case study, American Institute of Chemical Engineers (2001).
  23. Ilme JK, Keskinen KI, Markkanen VL, Aittamaa JR, in Institution of Chemical Engineers Symposium Series, Hemsphere Publishing Corporation, 142, 497 (1997).
  24. Jakobsson K, Aittamaa J, Keskinen KI, Ilme J, in Proceedings of the International Conference on Distillation & Absorption (on CD) (2002).
  25. Keskinen KI, Kinnunen A, Nystrom L, Aittamaa J, in Proceedings of the International Conference on Distillation & Absorption (on CD) (2002).
  26. Poortalari H, Sabet JK, Varaminian F, Sep. Sci. Technol., 55.11, 1885, 2017
  27. Holland CD, Fundamentals of multicomponent distillation, McGraw-Hill (1981).
  28. Powers M, Vickeryt D, Arehole A, Taylor R, Comput. Chem. Eng., 12, 1229, 1988
  29. Waggoner R, Loud G, Comput. Chem. Eng., 1, 49, 1977
  30. Medina A, Ashton N, McDermott C, Chem. Eng. Sci., 33, 331, 1978
  31. Medina A, Ashton N, McDermott C, Chem. Eng. Sci., 34, 1105, 1979
  32. Bravo JL, Rocha J, Fair J, Hydrocarb. Process., 64, 91, 1985
  33. Onda K, Takeuchi H, Okumoto Y, J. Chem. Eng. Jpn., 1, 56, 1968
  34. Lee JT, Lee WK, Korean Chem. Eng. Res., 20, 473, 1982
  35. Mori H, Oda A, Aragaki T, Kunimoto Y, J. Chem. Eng. Jpn., 29(2), 307, 1996
  36. Arwikar KJ, Doctoral Dissertation, University of California, Santa Barbara (1981).
  37. Poling BE, Prausnitz JM, O’connell JP, The properties of gases and liquids, McGraw-hill New York (2001).
  38. Prausnitz JM, Lichtenthaler RN, de Azevedo EG, Molecular thermodynamics of fluid-phase equilibria, Pearson Education (1998).
  39. Danesh A, Pvt and phase behaviour of petroleum reservoir fluids, Elsevier (1998).
  40. Behera M, Doctoral dissertation, National Institute of Technology, Rourkela (2010).
  41. De Hemptinne JC, Ledanois JM, Editions Technip (2012).
  42. Thomson GW, Chem. Rev., 38, 1, 1946
  43. Nava JO, Krishna R, Chem. Eng. Process., 43, 305, 2004
  44. Plus A, Aspen plus user guide, Aspen Technology Limited, Cambridge, United States (2003).
  45. Pavlenko A, Pecherkin N, Chekhovich VY, Zhukov V, Sunder S, Theor. Found. Chem. Eng., 43, 1, 2009
  46. Pavlenko A, Zhukov V, Pecherkin N, Chekhovich VY, Sunder S, Houghton P, Theor. Found. Chem. Eng., 44, 869, 2010
  47. Pavlenko A, Li X, Zhukov V, Pecherkin N, Volodin O, Surtaev A, Gao X, Zhang L, Sui H, Li H, J. Eng. Phys. Thermophys, 24, 210, 2015
  48. Olujic Z, Jansen H, Chem. Eng. Res. Des., 99, 2, 2015
  49. Pavlenko AN, Zhukov VE, Pecherkin NI, Li X, Sui H, J.Physics, 754, 042012, 2016