Issue
Korean Journal of Chemical Engineering,
Vol.35, No.4, 1045-1052, 2018
Morphological, acoustical, and physical properties of free-rising polyurethane foams depending on the flow directions
Polyurethane foam is widely used for automobile compartments as sound absorption materials due to its excellent noise dissipation characteristics. This sound absorption property is strongly dependent on the cavity and pore structures of the foams, and the cell morphology can be modulated by controlling experimental parameters. Two types of gelling catalysts were demonstrated in fabrications of polyurethane foams to control the cell morphology. The cell morphology of the free-rising polyurethane foams was investigated using dibutyltin-dilaurate and triethylenediamnine gelling catalysts, and the cell structures were analyzed from the free-rising samples obtained in various sampling heights and flow directions. The finer cell morphology was obtained with the organotin type catalyst by the faster gelling reactivity, compared with the amine type catalyst. In addition, the spherical small cavities in the samples obtained from horizontal planes of the free-rising foams revealed higher sound absorption coefficient and physical toughness than the elliptical irregular cavities from vertical planes, due to the higher homogeneity of cavity distributions in the horizontal planes.
[References]
  1. Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G, Compos. Sci. Technol., 65, 2344, 2005
  2. Park NC, Kim YC, Park CR, J. Korean Ind. Eng. Chem., 8(2), 197, 1997
  3. Zwinselman JJ, Bachmann WD, J. Cell. Plast., 24, 274, 1988
  4. Lee DK, Chen L, Sendijarevic A, Sendijarevic V, Frisch KC, Klempner D, J. Cell. Plast., 27, 135, 1991
  5. Gayathri R, Vasanthakumari R, Padmanabhan C, Int. J. Sci. Eng. Res., 4, 301, 2013
  6. Liu Y, Jia YB, Zhang XJ, Liu ZC, Ren YC, Yang B, Appl. Mech. Mater., 307, 196, 2013
  7. Doutres O, Atalla N, Dong K, J. Appl. Phys., 110, 064901, 2011
  8. Gwon JG, Kim SK, Kim JH, Mater. Des., 89, 448, 2016
  9. Gwon JG, Kim SK, kim JH, J. Porous Mat., 23, 465, 2016
  10. Sung CH, Lee KS, Lee KS, Oh SM, Kim JH, Kim MS, Jeong HM, Macromol. Res., 15(5), 443, 2007
  11. Doutres O, Atalla N, Dong K, J. Appl. Phys., 113, 054901, 2013
  12. Zhang C, Li J, Hu Z, Zhu F, Huang Y, Mater. Des., 41, 319, 2012
  13. Alvarez-Lainez M, Rodriguez-Perez MA, de Saja JA, Mater. Lett., 121, 26, 2014
  14. Tomyangkul S, Pongmuksuwan P, Harnnarongchai W, Chaochanchaikul K, J. Reinf. Plast. Compos., 35, 688, 2016
  15. Randall D, Lee S, The polyurethanes book, Wiley, New York (2002).
  16. Delebecq E, Pascault JP, Boutevin B, Ganachaud F, Chem. Rev., 113, 80, 2012
  17. Sung G, Gwon JG, Kim JH, J. Appl. Polym. Sci., 133, 43737, 2016
  18. Gwon JG, Sung G, Kim JH, Int. J. Precis. Eng. Manuf., 16, 2299, 2015
  19. Sung G, Kim JW, Kim JH, J. Ind. Eng. Chem., 44, 99, 2016
  20. Sung G, Kim SK, Kim JW, Kim JH, Polym. Test, 53, 156, 2016
  21. Kim SK, Sung G, Gwon JG, Kim JH, Int. J. Precis. Eng. Manuf.-Green Technol., 3, 367, 2016
  22. Sung G, Kim JH, Korean J. Chem. Eng., 34(4), 1222, 2017
  23. Sung G, Kim JH, Compos. Sci. Technol., 146, 147, 2017
  24. Lee J, Kim GH, Ha CS, J. Appl. Polym. Sci., 123(4), 2384, 2012
  25. Park HM, Mohanty AK, Drzal LT, Lee E, Mielewski DF, Misra M, J. Polym. Environ., 14, 27, 2006
  26. Johnson DL, Koplik J, Dashen R, J. Fluid Mech., 176, 379, 1987
  27. Allard J, Atalla N, Propagation of sound in porous media: modelling sound absorbing materials, John Wiley & Sons, Chichester (2009).
  28. Verdejo R, Stampfli R, Alvarez-Lainez M, Mourad S, Rodriguez-Perez M, Bruhwiler P, Shaffer M, Compos. Sci. Technol., 69, 1564, 2009
  29. Elliott JA, Windle AH, Hobdell JR, Eeckhaut G, Oldman RJ, Ludwig W, Boller E, Cloetens P, Baruchel J, J. Mater. Sci., 37(8), 1547, 2002