Issue
Korean Journal of Chemical Engineering,
Vol.35, No.4, 1033-1044, 2018
A novel system dynamics model for forecasting naphtha price
Fluctuations in naphtha price are directly related to the profit of petrochemical companies. Thus, forecasting of naphtha price is becoming increasingly important. To respond to this need, a naphtha crack (the price gap between naphtha and crude oil) forecasting model is developed herein. The objective of this study was to design a reasonable forecasting model that is immediately available and can be used to develop various naphtha supply strategies. However, it is very difficult to forecast a price value with a high accuracy. Therefore, the proposed model focuses not on the price value but on the direction of the crack. These considerations are vital to a company’s decision-making process. In addition, a system dynamics model that considers causal relations is proposed. It was developed based on heuristics, statistical analysis, seasonal effects, and relationships between factors that affect naphtha price, and it exhibits an accuracy rate of 84%-95% in forecasting of the naphtha crack three months in advance.
[References]
  1. Dooley G, Lenihan H, Resour. Policy, 30, 208, 2005
  2. Ryu JH, Korean J. Chem. Eng., 30(1), 27, 2013
  3. Lee MJ, Kim JY, Korean J. Chem. Eng., 34(6), 1604, 2017
  4. Kim M, Kim J, Int. J. Hydrog. Energy, 42(7), 3899, 2017
  5. Pai PF, Lin CS, Omega, 33, 497, 2005
  6. Brault JM, Labib R, Perrier M, Stuart P, Can. J. Chem. Eng., 89(4), 901, 2011
  7. Zhou XG, Liu LH, Yuan WK, Can. J. Chem. Eng., 74(5), 638, 1996
  8. Mandal S, Jana AK, Int. J. Hydrog. Energy, 38, 1244, 2013
  9. Ochoa-Estopier LM, Jobson M, Smith R, Comput. Chem. Eng., 59, 178, 2013
  10. Szkuta B, Sanabria L, Dillon T, IEEE Trans. Power Syst., 14, 851, 1999
  11. Gareta R, Romeo LM, Gil A, Energy Conv. Manag., 47(13-14), 1770, 2006
  12. Jammazi R, Aloui C, Energy Econ., 34, 828, 2012
  13. Conejo AJ, Plazas MA, Espinola R, Molina AB, IEEE Trans. Power Syst., 20, 1035, 2005
  14. Visetsripong P, Sooraksa P, Luenam P, Chaimongkol W, SICE Annual Conference, 659-663 (2008).
  15. Yan X, Chowdhury NA, Int. J. Electr. Power Energy Syst., 53, 20, 2013
  16. Myklebust J, Tomasgard A, Westgaard S, OPEC Energy Review, 34, 82, 2010
  17. Salehnia N, Falahi MA, Seifi A, Adeli MHM, J. Nat. Gas Sci. Eng., 14, 238, 2013
  18. Tak K, Kim J, Kwon H, Cho JH, Moon I, Korean J. Chem. Eng., 33(7), 1999, 2016
  19. Manca D, Comput. Chem. Eng., 57, 3, 2013
  20. Rasello R, Manca D, Comput. Aided Chem. Eng., 433 (2014).
  21. Lee KJ, Lee TH, Kim LH, Yeo YK, Korean J. Chem. Eng., 28(7), 1505, 2011
  22. Lee TH, Lee KJ, Jo BW, Kim LH, Yeo YK, Korean J. Chem. Eng., 28(6), 1331, 2011
  23. Sung C, Kwon H, Lee J, Yoon H, Moon I, Comput. Aided Chem. Eng., 145 (2012).
  24. Lyu B, Kwon H, Lee J, Yoon H, Jin J, Moon I, Comput. Aided Chem. Eng., 829 (2014).
  25. Kwon H, Lyu B, Tak K, Lee J, Cho JH, Moon I, Comput. Chem. Eng., 84, 226, 2016
  26. Kwon H, Tak K, Cho JH, Kim J, Moon I, Ind. Eng. Chem. Res., 56(5), 1267, 2017
  27. Tang X, Zhang BS, Hook M, Feng LY, Energy, 35(7), 3097, 2010
  28. Aslani A, Helo P, Naaranoja M, Appl. Energy, 113, 758, 2014
  29. Rendon-Sagardi MA, Sanchez-Ramirez C, Cortes-Robles G, Alor-Hernandez G, Cedillo-Campos MG, Appl. Energy, 123, 358, 2014
  30. Qudrat-Ullah H, Energy, 59, 285, 2013
  31. Rehan R, Knight MA, Unger AJA, Haas CT, Tunn Undergr Sp Tech, 39, 116, 2014
  32. Erdem O, Ceyhan E, Varli Y, Physica A, 414, 274, 2014