Issue
Korean Journal of Chemical Engineering,
Vol.35, No.4, 1019-1025, 2018
Hydrothermally synthesized highly dispersed Na2Ti3O7 nanotubes and their photocatalytic degradation and H2 evolution activity under UV and simulated solar light irradiation
Photocatalytic water splitting technologies are currently being considered for alternative energy sources. However, the strong demand for a high H2 production rate will present conflicting requirements of excellent photoactivity and low-cost photocatalysts. The first alternative may be abundant nanostructured titanate-related materials as a photocatalyst. Here, we report highly dispersed Na2Ti3O7 nanotubes synthesized via a facile hydrothermal route for photocatalytic degradation of Rhodamine B (RhB) and the water splitting under UV-visible light irradiation. Compared with commercial TiO2, the nanostructured Na2Ti3O7 demonstrated excellent photodegradation and water splitting performance, thus addressing the need for low-cost photocatalysts. The as-synthesized Na2Ti3O7 nanotubes exhibited desirable photodegradation, and rate of H2 production was 1,755 μmol·g-1·h-1 and 1,130 μmol·g-1·h-1 under UV and simulated solar light irradiation, respectively; the resulting as-synthesized Na2Ti3O7 nanotubes are active in UV light than that of visible light response.
[References]
  1. Hayashi H, Nakamura T, Ebina T, J. Ceram. Soc. Jpn., 124(1), 74, 2016
  2. Sauvet AL, Baliteau S, Lopez C, Fabry P, J. Solid State Chem., 177, 4508, 2004
  3. Umek P, Korosec RC, Jancar B, Dominko R, Arcon D, J. Nanosci. Nanotechnol., 7, 3502, 2007
  4. Preda S, Rutar M, Umek P, Zaharescu M, Mater. Res. Bull., 71, 98, 2015
  5. Rudola A, Sharma N, Balaya P, Electrochem. Commun., 61, 10, 2015
  6. Anwer S, Huang Y, liu J, Liu J, Xu M, Wang Z, Chen R, Zhang J, Wu F, ACS Appl. Mater. Interfaces, 9(13), 11669, 2017
  7. Yu YT, Korean J. Chem. Eng., 20(5), 850, 2003
  8. Corcoran DJD, Tunstall DP, Irvine JTS, Solid State Ion., 136-137, 297, 2000
  9. Ogura S, Kohno M, Sato K, Inoue Y, J. Mater. Chem., 8, 2335, 1998
  10. Wei YS, Shen LB, Wang ZM, Yang WD, Zhu H, Liu HT, Int. J. Hydrog. Energy, 36(8), 5088, 2011
  11. Xu CY, Wu J, Zhang P, Hu SP, Cui JX, Wang ZQ, Huang YD, Zhen L, Cryst. Eng. Commun., 15, 3448, 2013
  12. Izawa H, Kikkawa S, Koizumi M, J. Phys. Chem., 86, 5023, 1982
  13. Zhang YP, Guo L, Yang SH, Chem. Commun., 50, 14029, 2014
  14. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K, Langmuir, 14(12), 3160, 1998
  15. Zhang Z, Goodall JBM, Brown S, Karlsson L, Clark RJH, Hutchison JL, Rehman IU, Darr JA, Dalton Trans., 39, 711, 2010
  16. Wang W, Yu C, Lin Z, Hou J, Zhu H, Jiao S, Nanoscale, 5, 594, 2013
  17. Deepak TH, Subash D, Anjusree GS, Pai KRN, Nair SV, Nair AS, ACS Sustainable Chem. Eng., 2(2), 2772, 2014
  18. Sujaridworakun P, Larpkiattaworn S, Saleepalin S, Wasanapiarnpong T, Adv. Powder Technol., 23(6), 752, 2012
  19. Etacheri V, Valentin CD, Schneider J, Bahnemann D, Pillai SC, J. Photochem. Photobiol. C: Photochem. Rev., 25, 1, 2015
  20. Vattikuti SVP, Byon C, Reddy CV, Ravikumar RVSSN, RSC Adv., 5, 86675, 2015