Issue
Korean Journal of Chemical Engineering,
Vol.35, No.4, 1009-1018, 2018
Change of band-gap position of MTiO2 particle doped with 3d-transition metal and control of product selectivity on carbon dioxide photoreduction
This study attempted to obtain various products from carbon dioxide photoreduction using TiO2 catalysts doped with different transition metals of Mn, Fe, Co, Ni, Cu, and Zn (MTiO2). The band-gaps of MTiO2 catalysts decreased compared to pure TiO2, except for ZnTiO2. The intensities in photoluminescence curves, which can predict the recombination of excited electrons and holes, were weaker in MTiO2 catalysts than that of pure TiO2. The products obtained from carbon dioxide photoreduction were strongly related to the redox potential of carbon dioxide and the locations of band-gaps of MTiO2 catalysts. Methane was predominantly obtained in pure TiO2, FeTiO2, and NiTiO2 catalysts, and methanol and carbon monoxide were selectively produced in the CuTiO2 and ZnTiO2 catalysts, respectively. This result suggests that the desired product from carbon dioxide photoreduction can be selectively synthesized by doping certain metals.
[References]
  1. Wilk A, Wieclaw-Solny L, Tatarczuk A, Krotki A, Spietz T, Chwoła T, Korean J. Chem. Eng., 34(8), 2275, 2017
  2. Cui Z, Fan J, Duan H, Zhang J, Xue Y, Tan Y, Korean J. Chem. Eng., 34(1), 29, 2017
  3. Huang H, Lin J, Zhu G, Weng Y, Wang X, Fu X, Long J, Angew. Chem.-Int. Edit., 55, 8314, 2016
  4. Xie S, Zhang Q, Liu G, Wang Y, Chem. Commun., 52, 35, 2016
  5. He Z, Wen L, Wang D, Xue Y, Lu Q, Wu C, Chen J, Song S, Energy Fuels, 3982, 28, 2014
  6. Nahar S, Zain MFM, Kadhum AAH, Hasan HA, Hasan MR, Materials, 629, 10, 2017
  7. Zalfani M, Hu ZY, Yu WB, Mahdouani M, Bourguiga R, Wu M, Li Y, Van Tendeloo G, Djaoued Y, Su BL, Appl. Catal. B: Environ., 205, 121, 2017
  8. Yang Y, Zhang T, Le L, Ruan X, Fang P, Pan C, Xiong R, Shi J, Wei J, Sci. Rep., 4, 7045, 2014
  9. Zhao H, Pan F, Li Y, J. Materiomics, 3, 17, 2017
  10. Im YH, Lee JH, Kang MS, Korean J. Chem. Eng., 34(6), 1669, 2017
  11. Zhang M, Wu J, Lu DD, Yang J, Int. J. Photoenergy, 2013, 1, 2013
  12. Ansari SA, Khan MM, Ansari MO, Cho MH, New J. Chem., 40, 3000, 2016
  13. Pesci FM, Wang G, Klug DR, Li Y, Cowan AJ, J. Phys. Chem. C, 117, 25837, 2013
  14. Zhang K, Park JH, J. Phys. Chem. Lett., 8, 199, 2017
  15. Lee JH, Lee H, Kang M, Mater. Lett., 178, 316, 2016
  16. Park M, Kwak BS, Jo SW, Kang M, Energy Conv. Manag., 103, 431, 2015
  17. Dvoranova D, Brezova V, Mazur M, Malati MA, Appl. Catal. B: Environ., 37(2), 91, 2002
  18. Sakthivel S, Kisch H, ChemphysChem, 4, 487, 2003
  19. Yang K, Dai Y, Huang B, Whang MH, J. Phys. Chem. C, 113, 2624, 2009
  20. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M, Appl. Catal. A: Gen., 265(1), 115, 2004
  21. Protti S, Albini A, Serpone N, Phys. Chem. Chem. Phys., 16, 19790, 2014
  22. Low J, Yu J, Ho W, J. Phys. Chem. Lett., 6, 4244, 2015
  23. Kim HS, Kim D, Kwak BS, Han GB, Um MH, Kang M, Chem. Eng. J., 243, 272, 2014
  24. Kwak BS, Kang M, Appl. Surf. Sci., 337, 138, 2015
  25. Ge J, Ping Y, Liu G, Qiao G, Kim EJ, Wang M, Mater. Lett., 181, 216, 2016
  26. Burton AW, Ong K, Rea T, Chan IY, Microporous Mesoporous Mater., 117, 75, 2009
  27. Park GO, Shon JK, Kim YH, Kim JM, J. Nanosci. Nanotechnol., 15, 2441, 2015
  28. Deng X, Matranga C, J. Phys. Chem. C, 113, 11104, 2009
  29. Jiang ZJ, Jiang Z, Sci. Rep., 6, 27081, 2016
  30. Muruganandham M, Suri RPS, Sillanpaa M, Lee GJ, Wu JJ, Electron. Mater. Lett., 12, 693, 2016
  31. Wu F, Banerjee S, Li HF, Myung Y, Banerjee P, Langmuir, 32(18), 4485, 2016
  32. Tian H, Fan H, Dong G, Ma L, Ma J, RSC Adv., 6, 109091, 2016
  33. Fang J, Shi F, Bu J, Ding J, Xu S, Bao J, Ma Y, Jiang Z, Zhang W, Gao C, Huang W, J. Phys. Chem. C, 114, 7940, 2010
  34. Benkoula S, Sublemontier O, Patanen M, Nicolas C, Sirotti F, Naitabdi A, Gaie-Levrel F, Antonsson E, Aureau D, Ouf FX, Wada SI, Etcheberry A, Ueda K, Miron C, Sci. Rep., 5, 15088, 2015
  35. Sun H, Biedermann L, Bond TC, Geophys. Res. Lett., 34, 17813, 2007
  36. Pena-Flores J, Palomec-Garfias AF, Marquez-Beltran C, Sanchez-Mora E, Gomez-Barojas E, Perez-Rodriguez F, Nanoscale Res. Lett., 9, 499, 2014
  37. Chae J, Kang M, J. Power Sources, 196(8), 4143, 2011
  38. Santos RDS, Faria GA, Giles C, Leite CAP, Barbosa HDS, Arruda MAZ, Longo C, Appl. Mater. Interf., 4, 5555, 2012
  39. Ghasemi S, Rahimnejad S, Setayesh SR, Rohani S, Gholami MR, J. Hazard. Mater., 172(2-3), 1573, 2009
  40. Hori Y, Modern Aspect Electrochem., 42, 89, 2008
  41. Chen JW, Falivene L, Caporaso L, Cavallo L, Chen EYX, J. Am. Chem. Soc., 138(16), 5321, 2016
  42. Saeidi S, Amin NAS, Rahimpour MR, J. CO2 Utilization, 5, 66, 2014