Issue
Korean Journal of Chemical Engineering,
Vol.35, No.4, 974-983, 2018
Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation
The electrochemical route is a promising and environmentally friendly technique for fabrication of metal organic frameworks (MOFs) due to mild synthesis condition, short time for crystal growth and ease of scale up. A microstructure Cu3(BTC)2 MOF was synthesized through electrochemical path and successfully employed for CO2 and CH4 adsorption. Characterization and structural investigation of the MOF was carried out by XRD, FE-SEM, TGA, FTIR and BET analyses. The highest amount of carbon dioxide and methane sorption was 26.89 and 6.63 wt%, respectively, at 298K. The heat of adsorption for CO2 decreased monotonically, while an opposite trend was observed for CH4. The results also revealed that the selectivity of the developed MOF towards CO2 over CH4 enhanced with increase of pressure and composition of carbon dioxide component as predicted by the ideal adsorption solution theory (IAST). The regeneration of as-synthesized MOF was also studied in six consecutive cycles and no considerable reduction in CO2 adsorption capacity was observed.
[References]
  1. Abid HR, Rada ZH, Shang J, Wang S, Polyhedron (2016).
  2. Stewart C, Hessami MA, Energy Conv. Manag., 46(3), 403, 2005
  3. Adhikari AK, Lin KS, Chem. Eng. J., 284, 1348, 2016
  4. Yoon HC, Rallapalli PBS, Han SS, Beum HT, Jung TS, Cho DW, Ko M, Kim JN, Korean J. Chem. Eng., 32(12), 2501, 2015
  5. He Y, Zhou W, Qian G, Chen B, Chem. Soc. Rev., 43, 5657, 2014
  6. Waller MG, Williams ED, Matteson SW, Trabold TA, Appl. Energy, 127, 55, 2014
  7. Choi S, Drese JH, Jones CW, ChemSusChem, 2, 796, 2009
  8. Wang X, Chen LL, Guo QJ, Chem. Eng. J., 260, 573, 2015
  9. Li YD, Yi HH, Tang XL, Li FR, Yuan Q, Chem. Eng. J., 229, 50, 2013
  10. Liu L, Nicholson D, Bhatia SK, J. Phys. Chem. C, 119, 407, 2014
  11. Yi HH, Li FR, Ning P, Tang XL, Peng JH, Li YD, Deng H, Chem. Eng. J., 215, 635, 2013
  12. Shen CZ, Grande CA, Li P, Yu JG, Rodrigues AE, Chem. Eng. J., 160(2), 398, 2010
  13. Raganati F, Gargiulo V, Ammendola P, Alfe M, Chirone R, Chem. Eng. J., 239, 75, 2014
  14. Munusamy K, Sethia G, Patil DV, Rallapalli PBS, Somani RS, Bajaj HC, Chem. Eng. J., 195, 359, 2012
  15. Janiak C, Vieth JK, New J. Chem., 34, 2366, 2010
  16. Joaristi AM, Juan-Alcaniz J, Serra-Crespo P, Kapteijn F, Gascon J, Cryst. Growth Des., 12, 3489, 2012
  17. Long JR, Yaghi OM, Chem. Soc. Rev., 38, 1213, 2009
  18. Al-Kutubi H, Gascon J, Sudholter EJ, Rassaei L, ChemElectroChem, 2, 462, 2015
  19. Jung DW, Yang DA, Kim J, Kim J, Ahn WS, Dalton Trans., 39, 2883, 2010
  20. Ni Z, Masel RI, J. Am Chem. Soc., 128, 12394, 2006
  21. Khazalpour S, Safarifard V, Morsali A, Nematollahi D, RSC Adv., 5, 36547, 2015
  22. Ameloot R, Stappers L, Fransaer J, Alaerts L, Sels BF, De Vos DE, Chem. Mater., 21, 2580, 2009
  23. Czaja AU, Trukhan N, Muller U, Chem. Soc. Rev., 38, 1284, 2009
  24. Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID, Science, 283(5405), 1148, 1999
  25. Schlichte K, Kratzke T, Kaskel S, Microporous Mesoporous Mater., 73, 81, 2004
  26. Gaab M, Trukhan N, Maurer S, Gummaraju R, Muller U, Microporous Mesoporous Mater., 157, 131, 2012
  27. Silva P, Vilela SM, Tome JP, Paz FAA, Chem. Soc. Rev., 44, 6774, 2015
  28. Grondein A, Belanger D, Fuel, 90(8), 2684, 2011
  29. Khoshhal S, Ghoreyshi AA, Jahanshahi M, Mohammadi M, RSC Adv., 5, 24758, 2015
  30. Sun B, Kayal S, Chakraborty A, Energy, 76, 419, 2014
  31. Letcher TM, Thermodynamics, solubility and environmental issues, Elsevier (2007).
  32. Wu B, Zhang YM, Wang HP, J. Phys. Chem. B, 113(36), 12332, 2009
  33. Caminati W, Melandri S, Maris A, Ottaviani P, Angew. Chem.-Int. Edit., 45, 2438, 2006
  34. Hartmann M, Kunz S, Himsl D, Tangermann O, Ernst S, Wagener A, Langmuir, 24(16), 8634, 2008
  35. Li J, Yang J, Li L, Li J, J. Energy Chem., 23, 453, 2014
  36. Martinez F, Sanz R, Orcajo G, Briones D, Yanguez V, Chem. Eng. Sci., 142, 55, 2016
  37. Bhadauria S, Nanoti A, Dasgupta S, Divekar S, Gupta P, Chauhan R, RSC Adv., 6, 93003, 2016
  38. Salehi S, Anbia M, Energy Fuels, 31(5), 5376, 2017
  39. Al-Janabi N, Hill P, Torrente-Murciano L, Garforth A, Gorgojo P, Siperstein F, Fan XL, Chem. Eng. J., 281, 669, 2015
  40. Schlesinger M, Schulze S, Hietschold M, Mehring M, Microporous Mesoporous Mater., 132, 121, 2010
  41. Kumar RS, Kumar SS, Kulandainathan MA, Microporous Mesoporous Mater., 168, 57, 2013
  42. Ardelean I, Cora S, J. Mater. Sci.: Mater. Electronics, 19, 584, 2008
  43. Banisheykholeslami F, Ghoreyshi AA, Mohammadi M, Pirzadeh K, CLEAN-Soil, Air, Water, 43, 1084, 2015
  44. Wu H, Simmons JM, Srinivas G, Zhou W, Yildirim T, J. Phys. Chem. Lett, 1, 1946, 2010
  45. Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M, Appl. Geochem., 22, 249, 2007
  46. Zhu C, Zhang Z, Wang B, Chen Y, Wang H, Chen X, Zhang H, Sun N, Wei W, Sun Y, Microporous Mesoporous Mater., 226, 476, 2016
  47. Rada ZH, Abid HR, Shang J, He YD, Webley P, Liu SM, Sun HQ, Wang SB, Fuel, 160, 318, 2015
  48. Abid HR, Rada ZH, Shang J, Wang S, Polyhedron, 120, 103, 2016
  49. Du J, Zou G, Inorg. Chem. Commun., 69, 20, 2016
  50. Qiu H, Lv L, Pan BC, Zhang QJ, Zhang WM, Zhang QX, J. Zhejiang University-Science A, 10, 716, 2009
  51. Lazaridis N, Asouhidou D, Water Res., 37, 2875, 2003
  52. Mehrvarz E, Ghoreyshi AA, Jahanshahi M, Front. Chem. Sci. Eng., 11, 252, 2017
  53. Prasetyo I, Do DD, Chem. Eng. Sci., 53(19), 3459, 1998
  54. Chowdhury S, Balasubramanian R, J. CO2 Util., 13, 50, 2016
  55. Bao ZB, Yu LA, Ren QL, Lu XY, Deng SG, J. Colloid Interface Sci., 353(2), 549, 2011
  56. Zhimin H, Guocong Y, Barba D, J. Chem. Ind. Eng., 44, 143, 1993
  57. Myers A, Prausnitz JM, AIChE J., 11, 121, 1965
  58. Zhang ZJ, Xian SK, Xia QB, Wang HH, Li Z, Li J, AIChE J., 59(6), 2195, 2013
  59. Mishra P, Mekala S, Dreisbach F, Mandal B, Gumma S, Sep. Purif. Technol., 94, 124, 2012