Issue
Korean Journal of Chemical Engineering,
Vol.35, No.4, 922-925, 2018
Stabilization of bio-oil over a low cost dolomite catalyst
A low cost alkaline catalyst of dolomite (CaMg(CO3)2) was used to stabilize acacia sawdust bio-oil mixed with methanol. The upgrading efficiency was evaluated in terms of the total acid number (TAN) and viscosity. A change in the dolomite calcination temperature from 700 to 900 °C led to a significant change in the TAN and viscosity of the methanol-added bio-oil. Dolomite activated at higher temperatures had larger amounts of active CaO and MgO species due to the enhanced decarboxylation of calcium and magnesium carbonates. An increase in the dolomite content (1-5 wt%) decreased the TAN value of bio-oil remarkably. A thermal aging test of the methanol-added bio-oil upgraded using dolomite (calcined at 900 °C) at 50 °C for 24 h was carried out by storing the bio-oil at 80 °C for one week. Although the TAN value increased after the aging process, it was still lower than the TAN of raw bio-oil. In addition, increasing the methanol content (10-30 wt%) decreased the TAN and viscosity of the bio-oil significantly.
[References]
  1. Shafaghat H, Rezaei PS, Ro DH, Jae JH, Kim BS, Jung SC, Sung BH, Park YK, J. Ind. Eng. Chem., 54, 447, 2017
  2. Lee EH, Park RS, Kim H, Park SH, Jung SC, Jeon JK, Kim SC, Park YK, J. Ind. Eng. Chem., 37, 18, 2016
  3. Cha JS, Park SH, Jung SC, Ryu C, Jeon JK, Shin MC, Park YK, J. Ind. Eng. Chem., 40, 1, 2016
  4. Kim YM, Kim BS, Chea KS, Jo TS, Kim S, Park YK, Appl. Chem. Eng., 27(4), 407, 2016
  5. Aramburu B, Valle B, Santiviago C, Bilbao J, Gayubo AG, Chem. Eng. Trans., 37, 451, 2014
  6. Xiu S, Shahbazi A, Renew. Sust. Energ. Rev., 16, 4406, 2012
  7. Li X, Gunawan R, Lievens C, Wang Y, Mourant D, Wang S, Wu HW, Garcia-Perez M, Li CZ, Fuel, 90(7), 2530, 2011
  8. Weerachanchai P, Tangsathitkulchai C, Tangsathitkulchai M, Korean J. Chem. Eng., 29, 182, 2011
  9. Talukder MMR, Wu JC, Lau SK, Cui LC, Shimin G, Lim A, Energy Fuels, 23(1), 1, 2009
  10. Valle B, Aramburu B, Santiviago C, Bilbao J, Gayubo AG, Energy Fuels, 28(10), 6419, 2014
  11. Albuquerque MCG, Jimenez-Urbistondo I, Santamaria-Gonzalez J, Merida-Robles JM, Moreno-Tost R, Rodriguez-Castellon E, Jimenez-Lopez A, Azevedo DCS, Cavalcante CL, Maireles-Torres P, Appl. Catal. A: Gen., 334(1-2), 35, 2008
  12. Kouzu M, Kasuno T, Tajika M, Yamanaka S, Hidaka J, Appl. Catal. A: Gen., 334(1-2), 357, 2008
  13. Kouzu M, Yamanaka S, Hidaka J, Tsunomori M, Appl. Catal. A: Gen., 355(1-2), 94, 2009
  14. Liu XJ, He HY, Wang YJ, Zhu SL, Piao XL, Fuel, 87(2), 216, 2008
  15. Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J, Fuel, 87(12), 2798, 2008
  16. Granados ML, Poves MDZ, Alonso DM, Mariscal R, Galisteo FC, Moreno-Tost R, Santamaria J, Fierro JLG, Appl. Catal. B: Environ., 73(3-4), 317, 2007
  17. MacLeod CS, Harvey AP, Lee AF, Wilson K, Chem. Eng. J., 135(1-2), 63, 2008
  18. Lee YJ, Shafaghat H, Kim JK, Jeon JK, Jung SC, Lee IG, Park YK, Korean J. Chem. Eng., 34(8), 2180, 2017
  19. Matabola KP, van der Merwe EM, Strydom CA, Labuschagne FJW, J. Chem. Technol. Biotechnol., 85(12), 1569, 2010