Issue
Korean Journal of Chemical Engineering,
Vol.35, No.4, 900-908, 2018
Treatment of penicillin with supercritical water oxidation: Experimental study of combined ReaxFF molecular dynamics
Supercritical water oxidation (SCWO) of penicillin (PCN) was investigated under different operating conditions. The chemical oxygen demand (COD) removal rate could reach 99.4% at 400 °C, 24MPa, 1min and oxidation coefficient (OC) of 2. Experimental results showed that COD removal had no significant dependence on temperature and pressure variations. By contrast, COD removal could be significantly promoted with OC increasing from 0 to 2.0, but the effect was negligible as the OC further increased; similarly, longer residence time than a definite value seemed to contribute little to COD removal. Initial and deeper degradation pathways of penicillin were proposed based on the reactive force field (ReaxFF) molecular dynamics (MD) simulations. By tracing the evolution of intermediates, the migration routes of S and N during the SCWO process were obtained with H2S and NO2 produced as the corresponding products. Simulation results showed that SCW and oxidant not only accelerated the degradation by producing highly reactive radicals or molecules, but also participated in reactions by serving as H and O sources. Moreover, catalysis of water clusters in C-heteroatom bond cleavage was also observed.
[References]
  1. Michael I, Rizzo L, McArdell CS, Manaia CM, Merli C, Schwartz T, Dagot C, Fatta-Kassinos D, Water Res., 47, 957, 2013
  2. Martinez JL, Environ. Pollut., 157, 2893, 2009
  3. Kummerer K, Chemosphere, 75, 417, 2009
  4. Ding C, He JZ, Appl. Microbiol. Biotechnol., 87(3), 925, 2010
  5. Cha JM, Yang S, Carlson KH, J. Chromatogr. A, 1115, 46, 2006
  6. Altmann J, Ruhl AS, Zietzschmann F, Jekel M, Water Res., 55, 185, 2014
  7. Pouretedal HR, Sadegh N, J. Water Process Eng., 1, 64, 2014
  8. Serna-Galvis EA, Silva-Agredo J, Giraldo-Aguirre AL, Florez-Acosta OA, Torres-Palma RA, Ultrason. Sonochem., 31, 276, 2016
  9. Giraldo-Aguirre AL, Erazo-Erazo ED, Florez-Acosta OA, Serna-Galvis EA, Torres-Palma RA, J. Photochem. Photobiol. A-Chem., 311, 95, 2015
  10. Glaze WH, Kang JW, Chapin DH, Ozone Sci. Eng., 9, 335, 1987
  11. Serna-Galvis ES, Silva-Agredo J, Giraldo AL, Florez-Acosta OA, Torres-Palma RA, Sci. Total Environ., 541, 1431, 2016
  12. Villegas-Guzman P, Silva-Agredo J, Florez O, Giraldo-Aguirre AL, Pulgarin C, Torres-Palma RA, J. Environ. Manage., 190, 72, 2017
  13. Qian L, Wang S, Xu D, Guo Y, Tang X, Wang L, Water Res., 89, 118, 2016
  14. Sogut OO, Akgun M, J. Chem. Technol. Biotechnol., 85(5), 640, 2010
  15. Vadillo V, Garcia-Jarana MB, Sanchez-Oneto J, Portela JR, de la Ossa EJM, J. Chem. Technol. Biotechnol., 86(8), 1049, 2011
  16. Loppinet-Serani A, Aymonier C, Cansell F, J. Chem. Technol. Biotechnol., 85(5), 583, 2010
  17. Kayan B, Gozmen B, J. Hazard. Mater., 201, 100, 2012
  18. Islam MM, Zou C, van Duin ACT, Raman S, Phys. Chem. Chem. Phys., 18, 761, 2016
  19. Takahashi H, Hisaoka S, Nitta T, Chem. Phys. Lett., 363(1-2), 80, 2002
  20. Zhang Y, Zhang J, Zhao L, Sheng C, Energy Fuels, 24, 95, 2010
  21. Honma T, Inomata H, J. Supercrit. Fluids, 90, 1, 2014
  22. van Duin ACT, Dasgupta S, Lorant F, Goddard WA, J. Phys. Chem. A, 105(41), 9396, 2001
  23. Han Y, Jiang D, Zhang J, Li W, Gan Z, Gu J, FRONT. Chem. Sci. Eng., 1, 16, 2016
  24. Zhang JL, Weng XX, Han Y, Li W, Cheng JY, Gan ZX, Gu JJ, Fuel, 108, 682, 2013
  25. Zhang JL, Gu JT, Han Y, Li W, Gan ZX, Gu JJ, Ind. Eng. Chem. Res., 54(4), 1251, 2015
  26. Zhang J, Gu J, Han Y, Li W, Gan Z, Gu J, J. Mol. Model., 21, 54, 2015
  27. Jiang D, Wang Y, Zhang M, Zhang J, Li W, Han Y, Int. J. Hydrog. Energy, 15, 9667, 2017
  28. Yabalak E, Dondas HA, Gizir AM, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 3, 210, 2017
  29. Salmon E, van Duin ACT, Lorant F, Marquaire PM, Goddard WA, Org. Geochem, 40, 1195, 2009
  30. Chen B, Wei XY, Yang ZS, Liu C, Fan X, Qing Y, Zong ZM, Energy Fuels, 26(2), 984, 2012
  31. Wang HY, Stern HAG, Chakraborty D, Bai H, DiFilippo V, Goela JS, Pickering MA, Gale JD, Ind. Eng. Chem. Res., 52(44), 15270, 2013
  32. Savage PE, Chem. Rev., 99(2), 603, 1999
  33. Wang SZ, Guo Y, Wang LA, Wang YZ, Xu DH, Ma HH, Fuel Process. Technol., 92(3), 291, 2011
  34. Gopalan S, Savage PE, AIChE J., 41(8), 1864, 1995
  35. Koo M, Lee WK, Lee CH, Chem. Eng. Sci., 52(7), 1201, 1997
  36. Li L, Chen P, Gloyna EF, AIChE J., 37, 1687, 1991
  37. Lee DS, Gloyna EF, Li L, J. Supercrit. Fluids, 3, 249, 1990
  38. Segond N, Matsumura Y, Yamamoto K, Ind. Eng. Chem. Res., 41(24), 6020, 2002
  39. Akiya N, Savage PE, Chem. Rev., 102(8), 2725, 2002
  40. Gong WJ, Li F, Xi DL, Water Environ. Res., 80, 186, 2008
  41. Gopalan S, Savage PE, AIChE J., 41(8), 1864, 1995
  42. DiNaro JL, Tester JW, Howard JB, Swallow KC, AIChE J., 46(11), 2274, 2000
  43. Rice SF, Croiset E, Ind. Eng. Chem. Res., 40(1), 86, 2001
  44. Savage PE, Yu JL, Stylski N, Brock EE, J. Supercrit. Fluids, 12(2), 141, 1998
  45. Ma H, Ma J, J. Chem. Phys., 135, 054504, 2011
  46. Zhang J, Weng X, Han Y, Li W, Gan Z, Gu J, J. Energy Chem., 22, 459, 2013
  47. Sema-Galvis EA, Silva-Agredo J, Giraldo AL, Florez OA, Torres-Palma RA, Chem. Eng. J., 284, 953, 2016
  48. Shukla M, Susa A, Miyoshi A, Koshi M, J. Phys. Chem. A, 112(11), 2362, 2008
  49. Comandini A, Malewicki T, Brezinsky K, J. Phys. Chem. A, 16, 2409, 2012
  50. Gong Y, Guo Y, Wang S, Song W, Water Res., 100, 116, 2016
  51. Fujii T, Hayashi R, Kawasaki S, Suzuki A, Oshima Y, J. Supercrit. Fluids, 58(1), 142, 2011
  52. Kida Y, Class CA, Concepcion AJ, Timko MT, Green WH, Phys. Chem. Chem. Phys., 16, 9220, 2014
  53. Meng N, Jiang DD, Liu Y, Gao ZY, Cao YQ, Zhang JL, Gu JJ, Han Y, Fuel, 186, 394, 2016
  54. Wang J, He F, Li Y, Sun H, RSC Adv., 6, 93260, 2016