Issue
Korean Journal of Chemical Engineering,
Vol.35, No.4, 859-866, 2018
CO2 gasification performance and alkali/alkaline earth metals catalytic mechanism of Zhundong coal char
Gasification is generally considered as the most effective for low rank coal exploitation, and CO2 gasification offers the advantage of upgrading a greenhouse gas. Herein, the effects of alkali and alkaline earth metals on gasification of char derived from Zhundong low rank coal (R-char) were investigated using a thermo-gravimetric analyzer (TGA). Additionally, the characteristics of chars were analyzed by X-ray fluorescence (XRF) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The results show that the carbon conversion increases as the temperature and CO2 concentration increases. The R-char possesses a higher gasification rate and carbon conversion than the acid washing R-char (AR-char). It can be explained that the alkali and alkaline earth metals presence in coal char can remarkably facilitate the compound’s decomposition and make more char surface exposure to react during the gasification process. For the kinetic analysis, the volumetric reaction model reveals a proper description among the three models (VRM, RPM, SCM), and the R-char and AR-char presents a compensation effect in VRM. Besides, the detailed correlation of two chars is ln (k0)=0.10 EA-1.77 (R-char) and ln (k0)=0.10 EA-2.85 (AR-char), respectively.
[References]
  1. Wang SJ, Fang CL, Guan XL, Pang B, Ma HT, Appl. Energy, 136, 738, 2014
  2. Zhao BT, Tao WW, Zhong M, Su YX, Cui GM, Renew. Sust. Energ. Rev., 65, 44, 2016
  3. Li JB, Zhu MM, Zhang ZZ, Zhang K, Shen GQ, Zhang DK, Fuel Process. Technol., 149, 176, 2016
  4. Mingmin W, Jiansheng Z, Shouyu Z, Jinhu W, Guangxi Y, Korean J. Chem. Eng., 25(6), 1322, 2008
  5. Tanner J, Bhattacharya S, Chem. Eng. J., 285, 331, 2016
  6. Kang TJ, Park HJ, Namkung H, Xu LH, Fan S, Kim HT, Korean J. Chem. Eng., 34(4), 1238, 2017
  7. Quyn DM, Wu HW, Li CZ, Fuel, 81(2), 143, 2002
  8. Wu HW, Quyn DM, Li CZ, Fuel, 81(8), 1033, 2002
  9. Ding L, Zhou ZJ, Guo QH, Huo W, Yu GS, Fuel, 142, 134, 2015
  10. Walker PL, Matsumoto S, Hanzawa T, Fuel, 62, 140, 1983
  11. Bai YH, Zhu SH, Luo K, Gao MQ, Yan LJ, Li F, Appl. Therm. Eng., 112, 156, 2017
  12. Kosminski A, Ross DP, Agnew JB, Fuel Process. Technol., 87(11), 943, 2006
  13. Kosminski A, Ross DP, Agnew JB, Fuel Process. Technol., 87(12), 1037, 2006
  14. Kosminski A, Ross DP, Agnew JB, Fuel Process. Technol., 87(12), 1051, 2006
  15. Park HY, Ahn DH, Korean J. Chem. Eng., 24(1), 24, 2007
  16. Silbermann R, Gomez A, Gates I, Mahinpey N, Ind Eng Chem Res., 52, 14787, 2013
  17. Kook JW, Gwak IS, Gwak YR, Seo MW, Lee SH, Korean J. Chem. Eng., 34(12), 3092, 2017
  18. Sawettaporn S, Bunyakiat K, Kitiyanan B, Korean J. Chem. Eng., 26(4), 1009, 2009
  19. Mahinpey N, Gomez A, Chem. Eng. Sci., 148, 14, 2016
  20. Liu L, Guo QX, Chem. Rev., 101(3), 673, 2001
  21. Wu HW, Li XJ, Hayashi J, Chiba T, Li CZ, Fuel, 84(10), 1221, 2005
  22. Mui ELK, Cheung WH, Lee VKC, McKay G, Waste Manage., 30, 821, 2010
  23. Bond GC, Appl. Catal. A: Gen., 191(1-2), 23, 2000
  24. Wu L, Qiao Y, Gui B, Wang C, Xu JY, Yao H, Xu MH, Energy Fuels, 26(1), 112, 2012
  25. Liu S, Qiao Y, Lu ZL, Gui B, Wei MM, Yu Y, Xu MH, Energy Fuels, 28(3), 1911, 2014
  26. Qiao Y, Zhang LA, Binner E, Xu MH, Li CZ, Fuel, 89(11), 3381, 2010
  27. Sathe C, Pang YY, Li CZ, Energy Fuels, 13(3), 748, 1999
  28. Ochoa J, Cassanello MC, Bonelli PR, Cukierman AL, Fuel Process. Technol., 74(3), 161, 2001
  29. Huo W, Zhou ZJ, Wang FC, Wang YF, Yu GS, Fuel, 131, 59, 2014
  30. Skodras G, NenesG, Zafeiriou N, Appl. Therm. Eng., 74, 111, 2015
  31. De Micco G, Nasjleti A, Bohe AE, Fuel, 95(1), 537, 2012
  32. Rollinson AN, Karmakar MK, Chem. Eng. Sci., 128, 82, 2015
  33. Quyn DM, Wu HW, Hayashi J, Li CZ, Fuel, 82(5), 587, 2003
  34. Quyn DM, Wu HW, Bhattacharya SP, Li CZ, Fuel, 81(2), 151, 2002
  35. Lang RJ, Fuel, 65, 1324, 1986
  36. van Eyk PJ, Ashman PJ, Alwahabi ZT, Nathan GJ, Combust. Flame, 158(6), 1181, 2011
  37. Kosminski A, Ross DP, Agnew JB, Fuel Process. Technol., 87(11), 943, 2006
  38. Clemens AH, Damiano LF, Matheson TW, Fuel, 77, 1017, 1988
  39. Kwon TW, Kim JR, Kim SD, Park WH, Fuel, 68, 416, 1989
  40. Aranda G, Grootjes AJ, van der Meijden CM, van der Drift A, Gupta DF, Sonde RR, Poojari S, Mitra CB, Fuel Process. Technol., 141, 16, 2016
  41. Di Blasi C, Prog. Energy Combust. Sci., 35(2), 121, 2009
  42. Yip K, Ng E, Li CZ, Hayashi JI, Wu HW, P. Combust. Inst., 33, 1755, 2011