Issue
Korean Journal of Chemical Engineering,
Vol.35, No.3, 770-776, 2018
The effect of surfactants on the photocatalytic performance of BiOCl-ZnO nanoparticles in the degradation of an organic pollutant
The effect of surfactants on the performance of BiOCl-ZnO nanoparticles was investigated in the photocatalytic degradation of an organic pollutant. BiOCl-ZnO nanoparticles, modified with cetyl trimethyl ammonium bromide (CTAB) and polyethyleneglycol-20000 (PEG) as two kinds of surfactants, were used as photocatalysts. The photocatalysts were characterized by SEM, XRD, FTIR and DRS analyses. Characterization of the photocatalysts indicated the positive role of the surfactants in increasing the surface area of the photocatalysts. The experimental results demonstrated that PEG had more impressive effect than CTAB on the photocatalytic performance. The effects of important operational parameters, such as initial pollutant concentration, catalyst dosage and pH, on the degradation efficiency were studied. About 96.3% of the organic pollutant removal from synthetic wastewater was obtained at optimal conditions under visible irradiation. Equilibrium data were well fitted to the Langmuir isotherm equation.
[References]
  1. Helmes CT, Sigman CC, Fung VA, Thompson K, Doeltz MK, Mackie M, Klein TE, Lent D, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 19, 97, 1984
  2. Simon P, Advanced oxidation processes for water and wastewater treatment, March, IWA Publishing (2004).
  3. Alnuaimi MM, Rauf MA, Ashraf SS, Dyes Pigment., 72, 367, 2007
  4. Shaveisi Y, Sharifnia S, J. Energy Chem., 27, 290, 2018
  5. Moussavi G, Mahmoudi M, Chem. Eng. J., 152(1), 1, 2009
  6. Rauf MA, Meetani MA, Khaleel A, Ahmed A, Chem. Eng. J., 157(2-3), 373, 2010
  7. Sun JH, Sun SP, Wang GL, Qiao LP, Dyes Pigment., 74, 647, 2007
  8. Yonar T, Decolorisation of textile dyeing effluents using advanced oxidation processes, INTECH Open Access Publisher (2011).
  9. Shavisi Y, Sharifnia S, Zendehzaban M, Lobabi Mirghavami M, Kakehazar S, J. Ind. Eng. Chem., 20(5), 2806, 2014
  10. Yang J, Wang X, Lv X, Xu X, Mi Y, Zhao J, Ceram. Int., 40, 8607, 2014
  11. Chang XF, Gondal MA, Al-Saadi AA, Ali MA, Shen HF, Zhou Q, Zhang J, Du MP, Liu YS, Ji GB, J. Colloid Interface Sci., 377, 291, 2012
  12. Gondal MA, Chang XF, Ali MA, Yamani ZH, Zhou Q, Ji GB, Appl. Catal. A: Gen., 397(1-2), 192, 2011
  13. Liu ZS, Wu BT, Xiang DH, Zhu YB, Mater. Res. Bull., 47(11), 3753, 2012
  14. Pare B, Sarwan B, Jonnalagadda SB, Appl. Surf. Sci., 258(1), 247, 2011
  15. Sarwan B, Pare B, Acharya AD, Jonnalagadda SB, J. Photochem. Photobiol. B-Biol., 116, 48, 2012
  16. Shenawi-Khalil S, Uvarov V, Kritsman Y, Menes E, Popov I, Sasson Y, Catal. Commun., 12, 1136, 2011
  17. Xia JX, Yin S, Li HM, Xu H, Xu L, Zhang Q, Colloids Surf. A: Physicochem. Eng. Asp., 387, 23, 2011
  18. Zhao L, Zhang X, Fan C, Liang Z, Han P, Phys. B, 407(17), 3364, 2012
  19. Shi ZQ, Wang Y, Fan C, Wang YF, Ding G, Trans. Nonferrous Metals Soc. Chin., 21(10), 2254, 2011
  20. Zhang KL, Liu CM, Huang FQ, Zheng C, Wang WD, Appl. Catal. B: Environ., 68(3-4), 125, 2006
  21. Henle PSJ, Frenzel A, Scholz S, Kaskel S, Chem. Mater., 19(3), 366, 2007
  22. Zhang X, Jia FL, Zhang LZ, J. Phys. Chem. C, 112(3), 747, 2008
  23. Yu Y, J. Mater. Chem. A, 2, 1677, 2014
  24. Li Y, Li C, Sun X, Zhang Z, Peng Z, Zhang J, Zhao J, Mater. Lett., 116, 98, 2014
  25. Yousefi M, Noori E, Ghanbari D, Salavati-Niasari M, Gholami T, J. Cluster Sci., 25, 397, 2014
  26. Jiang J, Zhao K, Xiao XY, Zhang LZ, J. Am. Chem. Soc., 134(10), 4473, 2012
  27. Tao TX, Dai GS, Xu JB, Chu W, Wu ZC, Mater. Res. Innov., 20, 216, 2016
  28. Jayanthi SA, Sukanya D, Pragasam AJA, Sagayaraj P, Der Pharma Chemica, 5, 90, 2013
  29. Moradi S, Vossoughi, Feilizadeh M, Zakeri SME, Mohammadi MM, Rashtchian D, Booshehri AY, Res. Chem. Intermed., 41, 4151, 2015
  30. Zhang DF, Zeng FB, J. Mater. Sci., 47(5), 2155, 2012
  31. Pouretedal HR, Kadkhodaie A, Chin. J. Catal., 31, 1328, 2010