Issue
Korean Journal of Chemical Engineering,
Vol.35, No.3, 626-636, 2018
Kinetics of perovskite-like oxygen carriers for chemical looping air separation
Chemical looping air separation gives an energy-efficient choice for oxygen production. We performed kinetic analysis of YBaCo4O7+δ, Y0.95Ti0.05BaCo4O7+δ, Y0.2Ti0.05Dy0.75BaCo4O7+δ, and Y0.15Zr0.1Dy0.75BaCo4O7+δ oxygen carriers in a CLAS process. TG experiments were conducted with heating rates of 0.5, 1, and 2 oC/min in a thermogravimetric analyzer. Further exploration is required to develop an appropriate oxygen carrier. So, we used the model-free approach, Starink method, to evaluate the apparent activation energy. And, masterplots method was applied to determine the most probable mechanism function. The results show that the distributed activation energies of oxidation/ reduction process are 189.42/286.22 kJ/mol, 197.70/324.87 kJ/mol, 195.41/310.4 kJ/mol, and 192.20/293.53 kJ/mol for YBaCo4O7+δ, Y0.95Ti0.05BaCo4O7+δ, Y0.2Ti0.05Dy0.75BaCo4O7+δ, and Y0.15Zr0.1Dy0.75BaCo4O7+δ oxygen carriers, respectively. Random nucleation and nuclei growth A model is the most suitable for oxidation process. The A model and D are the most suitable for the reduction process. Regarding YBaCo4O7+δ, Y0.95Ti0.05BaCo4O7+δ, Y0.2Ti0.05Dy0.75BaCo4O7+δ, and Y0.15Zr0.1Dy0.75BaCo4O7+δ kinetic, oxygen transfer materials are rate-determined by nucleation and nuclei growth. For eduction kinetic, the gas diffusion stage could also become a dominant step.
[References]
  1. Shah K, Moghtaderi B, Zanganeh J, Wall T, Fuel, 107, 356, 2013
  2. Smith AR, Klosek J, Fuel Process. Technol., 70(2), 115, 2001
  3. Moghtaderi B, Energy Fuels, 24(1), 190, 2010
  4. Song H, Shah K, Doroodchi E, Wall T, Moghtaderi B, Energy Fuels, 28, 173, 2013
  5. Song H, Shah K, Doroodchi E, Moghtaderi B, Energy Fuels, 28(1), 163, 2014
  6. Shulman A, Cleverstam E, Mattisson T, Lyngfelt A, Energy Fuels, 23, 5269, 2009
  7. Wang K, Yu QB, Xie HQ, Qin Q, Funct. Mater. Lett., 6(2), 135002, 2013
  8. Song H, Shah K, Doroodchi E, Wall T, Moghtaderi B, Energy Fuels, 28(2), 1284, 2014
  9. Wang K, Yu QB, Qin Q, Zuo ZL, J. Therm. Anal. Calorim., 119, 2221, 2014
  10. Wang K, Yu QB, Qin Q, Energy Fuels, 27(9), 5466, 2013
  11. Ishida M, Yamamoto M, Ohba T, Energy Conv. Manag., 43(9-12), 1469, 2002
  12. Mattisson T, Leion H, Lyngfelt A, Fuel, 88(4), 683, 2009
  13. Arjmand M, Azad AM, Leion H, Lyngfelt A, Mattisson T, Energy Fuels, 25(11), 5493, 2011
  14. Wang K, Yu QB, Qin Q, J. Therm. Anal. Calorim., 112(2), 747, 2013
  15. Azimi G, Leion H, Ryden M, Mattisson T, Lyngfelt A, Energy Fuels, 27(1), 367, 2013
  16. Wang K, Yu QB, Qin Q, Zuo Z, J. Therm. Anal. Calorim., 119(3), 2221, 2015
  17. Zhao K, He F, Huang Z, Wei G, Zheng A, Li H, Zhao Z, Korean J. Chem. Eng., 34(6), 1651, 2017
  18. Kwak BS, Park NK, Baek JI, Ryu HJ, Kang MS, Korean J. Chem. Eng., 34(7), 1936, 2017
  19. Motohashi T, Kadita S, Fjellvag H, Karppinen M, Yamauchi H, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 148(1), 196, 2008
  20. Karppinen M, Yanauchi H, Otani S, Fujita T, Motohashi T, Huang YH, Valkeapaa M, Fjellvag H, Chem. Mater., 18(2), 490, 2006
  21. Kadita S, Kappinen M, Motohashi T, Yamauchi H, Chem. Mater., 20, 6378, 2008
  22. Wang S, Hao HS, Zhu BF, Jia JF, Hu X, J. Mater. Sci., 43(15), 5385, 2008
  23. Hao HS, He QL, Cheng YG, Zhao LM, J. Phys. Chem. Solids, 75(4), 495, 2014
  24. Zhang SM, MA Dissertation, ZhengZhou University (2011).
  25. Guo LJ, MA Dissertation, ZhengZhou University (2005).
  26. Kozeeva LP, Kameneva MY, Lavrov AN, Podberezskaya NV, Inorg Mater., 49(6), 626, 2013
  27. Parkkima O, Yamauchi H, Karppinen M, Chem. Mater., 25(4), 599, 2013
  28. Martin V, Solid State Sci., 7(10), 1163, 2005
  29. Rasanen S, Motohashi T, Yamauchi H, Kappinen M, J. Solid State Chem., 183, 692, 2010
  30. Komiyama T, Motohashi T, Masubuchi Y, Kikkawa S, Mater. Res. Bull., 45(10), 1527, 2010
  31. Rasanen S, Parkkima O, Rautama EL, Yamauchi H, Karppinen M, Solid State Ion., 208, 31, 2012
  32. Jankovic B, Adnadevic B, Jovanovic J, Thermochim. Acta, 452(2), 106, 2007
  33. Vyazovkin S, Thermochim. Acta, 355, 145, 2000
  34. Brown ME, Dollimore D, Galwey AK, Elsevier, Amsterdam., 22, 41 (1980).
  35. Vyazovkin S, Wight CA, Thermachim. Acta, 341, 53, 1999
  36. Vyazovkin S, Wight CA, J. Phys. Chem. A, 101(39), 7217, 1997
  37. Coats AW, Redfern JP, Nature, 201, 68, 1964
  38. Coats AW, Redfern JP, J. Polym. Sci. Part B: Polym. Lett., 3, 917, 1965
  39. Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881, 1965
  40. Doyle CD, Anal. Chem., 33, 77, 1961
  41. Doyle CD, J. Appl. Polym. Sci., 5, 285, 1961
  42. Doyle CD, Nature, 207, 290, 1965
  43. Kissinger HE, Anal. Chem., 29, 1702, 1957
  44. Akahira T, Sunose T, Res. Rep. Chiba. Inst. Technol., 16, 22, 1971
  45. Vyazovkin SV, Lesnikovich AI, Thermochim. Acta, 34(3), 609, 1988
  46. Agrawal PK, Thermochim. Acta, 203, 93, 1992
  47. Starink MJ, Thermochim. Acta, 288(1-2), 97, 1996
  48. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N, Thermochim. Acta, 520(1-2), 1, 2011
  49. Wanjun T, Yuwen L, Hen Z, Cunxin W, Thermochim. Acta, 74, 309, 2003
  50. Gotor FJ, Criado JM, Malek J, Koga N, J. Phys. Chem. A, 104(46), 10777, 2000
  51. Wanjun T, Yuwen L, Hen Z, Cunxin W, Thermochim. Acta, 74, 309, 2003
  52. Jin H, Okamoto T, Ishida M, Energy Fuels, 12(6), 1272, 1998
  53. Halikia I, Neou-Syngouna P, Kolitsa D, Thermochim. Acta, 320(1-2), 75, 1998
  54. Perkins C, Lichty P, Weimer AW, Chem. Eng. Sci., 62(21), 5952, 2007
  55. Pineau A, Kanari N, Gaballah I, Thermochim. Acta, 447(1), 89, 2006
  56. Hossain MM, de Lasa HI, Chem. Eng. Sci., 65(1), 98, 2010
  57. Hossain MM, de Lasa HI, Chem. Eng. Sci., 63(18), 4433, 2008
  58. Sun YQ, Sridhar S, Seetharaman S, Wang H, Liu LL, Wang XD, Zhang ZT, Sci. Rep., 6, 1, 2016
  59. Hossain MM, de Lasa HI, Chem. Eng. Sci., 65(1), 98, 2010
  60. Hossain MM, de Lasa HI, Chem. Eng. Sci., 63(18), 4433, 2008
  61. Hancock JD, Sharp JH, J. Am. Ceram. Soc., 55(2), 74, 1972