Issue
Korean Journal of Chemical Engineering,
Vol.35, No.1, 283-288, 2018
Synthesis of Ni promoted molybdenum dioxide nanoparticles using solvothermal cracking process for catalytic partial oxidation of n-dodecane
Ni promoted MoO2 nanoparticles were synthesized by combining spray pyrolysis and solvothermal cracking process. First, polycrystalline MoO3 microparticles were prepared by spray pyrolysis at 600 oC. Then nano-sized Ni- MoO2 particles were formed by solvothermal cracking process after adding Ni precursor, which disassembled polycrystalline MoO3 microparticles into crystalline grains by thermal expansion and shattered them into Ni-MoO2 nanoparticles by the subsequent solvothermal polyol reduction process. TPR profiles of Ni-MoO2 nanoparticles presented the decrease of reducibility of MoO2 with addition of Ni promoter. Catalytic partial oxidation of n-dodecane was conducted at various temperatures from 450 °C to 850 °C using Ni-MoO2 nanoparticles and pure MoO2 nanoparticles. H2 yield of all the Ni-MoO2 nanoparticles was higher than that of pure MoO2 nanoparticles at 850 °C. Specially, 7 and 10mol% Ni-MoO2 nanoparticles showed desirable catalytic performance of ca. 60% of H2 yield. This is mainly attributed to the existence of polymolybdate with addition of Ni and Ni2+ species partly located in the polymolybdate layer without formation of bulk Ni phase.
[References]
  1. Marin-Flores O, Turba T, Ellefson C, Wang K, Breit J, Ahn J, Norton MG, Ha S, Appl. Catal. B: Environ., 98(3-4), 186, 2010
  2. Katrib A, Leflaive P, Hilaire L, Maire G, Catal. Lett., 38(1-2), 95, 1996
  3. Flores OGM, Ha S, Appl. Catal. A: Gen., 352(1-2), 124, 2009
  4. Kwon BW, Ellefson C, Breit J, Kim J, Norton MG, Ha S, J. Power Sources, 243, 203, 2013
  5. Kwon BW, Hu S, Marin-Flores O, Norton MG, Kim J, Scudiero L, Breit J, Ha S, Energy Technol., 2(5), 425, 2014
  6. Shi Y, Guo B, Corr SA, Shi Q, Hu Y, Heier KR, Chen L, Seshadri R, Stucky GD, Nano Lett., 9(12), 4215, 2009
  7. Han P, Ma W, Pang S, Kong Q, Yao J, Bi C, Cui G, J. Mater. Chem., 1(19), 5949, 2013
  8. Matsumura M, Hirai C, J. Chem. Eng. Jpn., 31(5), 734, 1998
  9. Ellefson CA, Marin-Flores O, Ha S, Norton MG, J. Mater. Sci., 47(5), 2057, 2012
  10. Cotton AF, Wilkinson G, Bochmann M, Murillo CA, Advanced inorganic chemistry, Wiley (1999).
  11. Spevack PA, McIntyre NS, J. Phys. Chem., 97(42), 11020, 1993
  12. Zhou J, Xu NS, Deng SZ, Chen J, She JC, Wang ZL, Adv. Mater., 15(21), 1835, 2003
  13. Liang YG, Yi ZH, Yang SJ, Zhou LQ, Sun JT, Zhou YH, Solid State Ion., 177(5-6), 501, 2006
  14. Chen XY, Zhang ZJ, Li XX, Shi CW, Li XL, Chem. Phys. Lett., 418(1-3), 105, 2006
  15. Choi H, Heo JH, Ha S, Kwon BW, Yoon SP, Han J, Kim WS, Im SH, Kim J, Chem. Eng. J., 310, 179, 2017
  16. Lee HJ, Shin GS, Kim YC, Korean J. Chem. Eng., 32(7), 1267, 2015
  17. Choi H, Kim D, Yoon SP, Han J, Ha S, Kim J, J. Anal. Appl. Pyrolysis, 112, 276, 2015
  18. Liu M, Kong L, Lu C, Ma X, Li X, Luo Y, Kang L, J. Mater. Chem., 1(4), 1380, 2013
  19. Xu LH, Li XY, J. Cryst. Growth, 312(6), 851, 2010
  20. He Q, Marin-Flores O, Hu S, Scudiero L, Ha S, Norton MG, J. Nanopart. Res., 16, 2385, 2014
  21. Qu LL, Zhang WP, Kooyman PJ, Prins R, J. Catal., 215(1), 7, 2003
  22. Arnoldy P, De Jonge J, Moulijn JA, J. Phys. Chem., 89(21), 4517, 1985
  23. Chen J, Li W, Shen R, Korean J. Chem. Eng., 33(2), 500, 2016
  24. Marin-Flores O, Turba T, Breit J, Norton MG, Ha S, Appl. Catal. A: Gen., 381(1-2), 18, 2010
  25. He Q, Marin-Flores O, Hu S, Scudiero L, Ha S, Norton MG, Scr. Mater., 100, 55, 2015
  26. Dufresne P, Payen E, Grimblot J, Bonnelle JP, J. Phys. Chem., 85(16), 2344, 1981
  27. Matsubara E, Shinoda K, Japanese J. Appl. Phys., 38(S1), 576, 1999