Issue
Korean Journal of Chemical Engineering,
Vol.35, No.1, 137-146, 2018
High performance removal of methyl mercaptan on metal modified activated carbon
A series of coconut shell activated carbon catalysts, modified by metal oxides, were prepared by an ultrasound- assisted incipient wetness method for the removal of methyl mercaptan (CH3SH). The catalysts were investigated using XRD, BET, XPS, TEM and TA.The results showed that the catalyst combined with 2wt% Fe loading and iron (Fe) : copper (Cu) (mole ratio) 10 : 3, and calcination at 300 °C had a superior removal efficiency. The high activity could be attributed to the generation of highly dispersed Fe-Cu nanocomposites. The results revealed that calcination temperature not only influenced the chemical states and nanocomposite size of iron and copper, but also affected the pore structures of the catalysts. Compared with Fe/AC, the interaction between the iron and copper oxides resulted in smaller nanoparticles and high dispersion for Fe-Cu/AC. Product analysis results suggested dimethyl disulfide, metal methanesulfonates and methyl thiolates were the oxidation products which adsorbed on the activated carbon.
[References]
  1. Ding L, Liu TX, Li XZ, J. Chem. Technol. Biotechnol., 89(3), 455, 2014
  2. Iliuta MC, Larachi F, J. Chem. Data, 52, 2, 2007
  3. Whelan ME, Min D, Rhew RC, Atmos. Environ., 73, 131, 2013
  4. Wu T, Wang X, Li D, Yi Z, Atmos. Environ., 44, 5065, 2010
  5. Liu ZT, Zhou JL, Zhang BJ, J. Mol. Catal., 94, 255, 1994
  6. Cai W, Lu G, He J, Lan Y, Ceram. Int., 38, 3167, 2012
  7. Cammarano C, Huguet E, Cadours R, Leroi C, Coq B, Hulea V, Appl. Catal. B: Environ., 156-157, 128, 2014
  8. Conti-Ramsden MG, Nkrumah-Amoako K, Brown NW, Roberts EPL, Adsorption, 19, 989, 2013
  9. Huguet E, Coq B, Durand R, Leroi C, Cadours R, Hulea V, Appl. Catal. B: Environ., 134-135, 344, 2013
  10. van Leerdam RC, van den Bosch PLF, Lens PNL, Janssen AJH, Environ. Sci. Technol., 45, 1320, 2011
  11. Bagreev A, Menendez JA, Dukhno I, Tarasenko Y, Bandosz TJ, Carbon, 43, 208, 2005
  12. Bashkova S, Bagreev A, Bandosz TJ, Environ. Sci. Technol., 36, 2777, 2002
  13. Katoh H, Kuniyoshi I, Hirai M, Shoda M, Appl. Catal. B: Environ., 6(3), 255, 1995
  14. Cui H, Turn SQ, Appl. Catal. B: Environ., 88(1-2), 25, 2009
  15. Liu XL, Guo JX, Chu YH, Luo DM, Yin HQ, Sun MC, Yavuz R, Fuel, 123, 93, 2014
  16. Bashkova S, Bagreev A, Bandosz TJ, Langmuir, 19(15), 6115, 2003
  17. Kim DJ, Yie JE, J. Colloid Interface Sci., 283(2), 311, 2005
  18. Laosiripojana N, Sutthisripok W, Charojrochkul S, Assabumrungrat S, Appl. Catal. A: Gen., 478, 9, 2014
  19. Lee SW, Daud WMAW, Lee MG, J. Ind. Eng. Chem., 16(6), 973, 2010
  20. Tamai H, Nagoya H, Shiono T, J. Colloid Interface Sci., 300(2), 814, 2006
  21. Vega E, Lemus J, Anfruns A, Gonzalez-Olmos R, Palomar J, Martin MJ, J. Hazard. Mater., 258-259, 77, 2013
  22. Zhao S, Yi H, Tang X, Gao F, Zhang B, Wang Z, Zuo Y, J. Clean Prod., 87, 856, 2015
  23. Wang X, Qiu J, Ning P, Ren X, Li Z, Yin Z, Chen W, Liu W, J. Hazard. Mater., 229-230, 128, 2012
  24. Yi H, Li K, Tang X, Ning P, Peng J, Wang C, He D, J. Chem. Eng., 230, 220, 2013
  25. Zhang T, Liu J, Wang D, Zhao Z, Wei Y, Cheng K, Jiang G, Duan A, Appl. Catal. B: Environ., 148-149, 520, 2014
  26. Bashkova S, Bagreev A, Bandosz TJ, Catal. Today, 99(3-4), 323, 2005
  27. He D, Yi HH, Tang XL, Ning P, Li K, Wang HY, Zhao SZ, J. Mol. Catal. A-Chem., 357, 44, 2012
  28. Guo JX, Liu XL, Luo DM, Yin HQ, Li JJ, Chu YH, Ind. Eng. Chem. Res., 54(4), 1261, 2015
  29. Cui Z, Fan J, Duan H, Zhang J, Xue Y, Tan Y, Korean J. Chem. Eng., 34(1), 29, 2017
  30. Rey A, Faraldos M, Casas JA, Zazo JA, Bahamonde A, Rodriguez JJ, Appl. Catal. B: Environ., 86(1-2), 69, 2009
  31. Descostes M, Mercier F, Thromat N, Beaucaire C, Gautier-Soyer M, Appl. Surf. Sci., 165(4), 288, 2000
  32. Zhang GQ, Li Z, Zheng HY, Fu TJ, Ju YB, Wang YC, Appl. Catal. B: Environ., 179, 95, 2015
  33. Hu Zhong-Pan, Zhu Yun-Pei, Gao Ze-Min, Wang Guoxiong, Liu Yuping, Liu Xinying, Yuan Zhong-Yong, Chem. Eng. J., 302, 23, 2016
  34. Benassi R, Theor. Chem. Acc., 112, 95, 2004
  35. Castner DG, Hinds K, Grainger DW, Langmuir, 12(21), 5083, 1996
  36. Mullins DR, McDonald TS, Surf. Sci., 602, 1280, 2008
  37. Rufael TS, Huntley DR, Mullins DR, Gland JL, J. Phys. Chem. B, 102(18), 3431, 1998
  38. Lin YH, Tseng TK, Chu H, Appl. Catal. A: Gen., 469, 221, 2014
  39. Adib F, Bagreev A, Bandosz TJ, J. Colloid Interface Sci., 214(2), 407, 1999
  40. Adib F, Bagreev A, Bandosz TJ, Environ. Sci. Technol., 34, 686, 2000
  41. Bagreev A, Menendez JA, Dukhno I, Tarasenko Y, Bandosz TJ, Carbon, 42, 469, 2004
  42. Wang M, Wang ZC, Sun ZL, Jiang H, React. Kinet. Catal. Lett., 84(2), 223, 2005
  43. Wang M, Song ZG, Jiang H, Gong H, J. Therm. Anal. Calorim., 98, 801, 2009
  44. Wu Z, Dreisinger DB, Urch H, Fassbender S, Hydrometallurgy, 142, 121, 2014