Issue
Korean Journal of Chemical Engineering,
Vol.35, No.1, 129-136, 2018
Effect of CO2 addition on lignite gasification in a CFB reactor: A pilot-scale study
The addition of carbon dioxide to the gasification media during lignite gasification is introduced. The paper presents thermodynamic grounds of CO2 enhanced gasification using a simplified equilibrium model. Experimental tests conducted using a pilot-scale circulating fluidized bed gasifier are discussed. Detailed analysis of the CO2/ C ratio on process conditions, namely on the process gas composition, lower heating value and H2/CO ratio, is provided. Process gas composition implies that the gas is suitable for heat and power generation. Alternatively, CO2 enhanced gasification could be considered as a carbon capture and utilization technology when external, renewable heat supply to the process is used. The results thus obtained are the initial step toward development of the CO2 enhanced gasification process.
[References]
  1. Minchener AJ, Fuel, 84, 17, 2005
  2. Smoot LD, Smith PJ, Coal Combustion and Gasification, Springer US, Boston, MA (1985).
  3. Higman C, State of the gasification industry-the updated worldworldwide gasification database, in: Colorado Springs (2013).
  4. The Gasification and Syngas Technologies Council, http://www.gasification-syngas.org.
  5. Prabowo B, Susanto H, Umeki K, Yan M, Yoshikawa K, Front. Energy, 9, 3, 2015
  6. Cormos CC, Starr F, Tzimas E, Peteves S, Int. J. Hydrog. Energy, 33, 4, 2008
  7. Irfan MF, Usman MR, Kusakabe K, Energy, 36, 1, 2011
  8. Chmielniak T, Sciazko M, Tomaszewicz G, Tomaszewicz M, J. Therm. Anal. Calorim., 117, 3, 2014
  9. Renganathan T, Yadav MV, Pushpavanam S, Voolapalli RK, Cho YS, Chem. Eng. Sci., 83, 159, 2012
  10. Yoshida S, Matsunami J, Hosokawa Y, Yokota O, Tamaura Y, Kitamura M, Energy Fuels, 13, 5, 1999
  11. Chmielniak T, Sobolewski A, Tomaszewicz G, Przem. Chem., 94(4), 442, 2015
  12. Kook JW, Gwak IS, Gwak YR, Seo MW, Lee SH, Korean J. Chem. Eng., (2017).
  13. Ahmed II, Gupta AK, Appl. Energy, 88, 5, 2011
  14. Kim JH, Kim GM, Lisandy KY, Jeon CH, Korean J. Chem. Eng., (2017).
  15. Marcourt M, Paquay V, Piel A, Pirard JP, Fuel, 62, 7, 1983
  16. Kale GR, Dry autothermal reforming of fuels, CSIR-National Chemical Laboratory (2014).
  17. Fung DPC, Kim SD, Korean J. Chem. Eng., 7, 2, 1990
  18. Benedikt F, Fuchs J, Schmid JC, Muller S, Hofbauer H, Korean J. Chem. Eng., 34, 9, 2017
  19. Sawettaporn S, Bunyakiat K, Kitiyanan B, Korean J. Chem. Eng., 26, 4, 2009
  20. Puig-Arnavat M, Bruno JC, Coronas A, Renew. Sust. Energ. Rev., 14, 9, 2010
  21. Xu J, Froment GF, AIChE J., 35, 1, 1989
  22. Hou K, Hughes R, Chem. Eng. J., 82, 1, 2001
  23. Zainal ZA, Ali R, Lean CH, Seetharamu KN, Energy Conv. Manag., 42, 12, 2001
  24. Jarungthammachote S, Dutta A, Energy, 32, 9, 2007
  25. Chen L, Yong SZ, Ghoniem AF, Prog. Energy Combust. Sci., 38, 2, 2012
  26. Guo J, Lou H, Zhao H, Chai D, Zheng X, Appl. Catal. A: Gen., 273, 1, 2004
  27. Mentser M, Ergun S, Energy Research Center (1973).
  28. Kajitani S, Hara S, Matsuda H, Fuel, 81, 5, 2002
  29. Karim GA, J. KONES Powertrain Transp., 14, 4, 2007
  30. Szwaja S, J. KONES, 16, 2009
  31. Akansu A, Int. J. Hydrog. Energy, 29, 14, 2004
  32. Kent JA, Handbook of Industrial Chemistry and Biotechnology, Springer Science & Business Media (2013).