Issue
Korean Journal of Chemical Engineering,
Vol.35, No.1, 61-72, 2018
Gas-liquid mass transfer studies: The influence of single- and double-impeller configurations in stirred tanks
The influence of impeller structure on the mass transfer characteristics was studied with the steady-state method for gas-liquid volumetric mass transfer coefficient (kLa). The single-impeller configurations included eight impeller types (three radial flow impellers, four axial flow impellers and one mixed flow impeller), and the doubleimpeller included three configurations (RT+RT, RT+WHD, WHD+WHD). For single-impeller, the gas-liquid mass transfer rates of radial flow impellers were better than those of axial flow impellers under the same rotation speed and gas flow rate. The mass transfer performance (defined as the volumetric mass transfer coefficient per unit power input) of radial flow impellers were also better than that of axial flow impellers. With the same kLa value under a certain gas flow rate, the local bubble size distribution between radial flow impeller and axial flow impeller was similar. As for double impellers, RT+RT provided the highest mass transfer rate under certain rotation speed and gas flow rate, while WHD+WHD gave the highest values of gas-liquid mass transfer coefficient with the same power consumption.
[References]
  1. Van’t Riet K, Ind. Eng. Chem. Process Des. Dev., 18, 357, 1979
  2. Dawson MK, Ph.D Thesis, University of Birmingham, UK (1993)
  3. Whitton MJ, Nienow AW, The Proc 3rd Int Conf on Bioreactor and Bioprocess Fluid Dynamics, London (1993).
  4. Cook M, Middleton JC, Bush JR, The Proc 2nd Int Conf on Bioreactor Fluid Dynamics, Cranfield (1988).
  5. Nienow AW, Trans IChemE, Part A, 74, 417, 1996
  6. Warmoeskerken MCG. Smith JM, Chem. Eng. Res. Des., 67, 193, 1989
  7. Linek V, Benes P, Sinkule J, Trans IChemE, Part C, 69, 145, 1991
  8. Martin T, Ph.D Thesis, University of Birmingham, UK (1996).
  9. Martin T, McFarlane CM, Nienow AW, The Proc 8th Europ Mixing Conf, Rugby (1994).
  10. Chen ZD, Chen JJJ, Chem. Eng. Res. Des., 77(2), 104, 1999
  11. Zhu YG, Bandopadhyay PC, Wu J, J. Chem. Eng. Jpn., 34(5), 579, 2001
  12. Sardeing R, Aubin J, Xuereb C, Trans IChemE, Part A, 82, 1589, 2004
  13. Bouaifi MI, Roustan M, Can. J. Chem. Eng., 76(3), 390, 1998
  14. Moucha T, Linek V, Prokopova E, Chem. Eng. Sci., 58(9), 1839, 2003
  15. Moucha T, Linek V, Erokhin K, Rejl JF, Fujasova M, Chem. Eng. Sci., 64(3), 598, 2009
  16. Shewale SD, Pandit AB, Chem. Eng. Sci., 61(2), 489, 2006
  17. Ungerman AJ, Heindel TJ, Biotechnol. Prog., 23(3), 613, 2007
  18. Fujasova M, Linek V, Moucha T, Chem. Eng. Sci., 62(6), 1650, 2007
  19. Xie MH, Xia JY, Zhou Z, Chu J, Zhuang YP, Zhang SL, Ind. Eng. Chem. Res., 53(14), 5941, 2014
  20. Buffo MM, Correa LJ, Esperanca MN, Cruz AJG, Farinas CS, Badino AC, Biochem. Eng. J., 114, 130, 2016
  21. Heijnen JJ, Van’t Riet K, Wolthuis AJ, Biotechnol. Bioeng., 22, 1945, 1980
  22. LinekV, Vacek V, Benes P, Chem. Eng. J., 34, 11, 1987
  23. Scargiali F, Russo R, Grisafi F, Brucato A, Chem. Eng. Sci., 62(5), 1376, 2007
  24. Linek V, Benes P, Vacek V, Hovorka F, Chem. Eng. J., 25, 77, 1982
  25. Imai Y, Takei H, Matsumura M, Biotechnol. Bioeng., 29, 982, 1987
  26. Besagni G, Brazzale P, Fiocca A, Inzoli F, Flow Meas. Instrum., 52, 190, 2016
  27. Zahradnik J, Fialova M, Linek V, Chem. Eng. Sci., 54(21), 4757, 1999
  28. Ribeiro CP, Mewes D, Chem. Eng. Sci., 62(17), 4501, 2007
  29. Nguyen PT, Hampton MA, Nguyen AV, Birkett GR, Chem. Eng. Res. Des., 90(1A), 33, 2012
  30. Gezork KM, Bujalski W, Cooke M, Nienow AN, Chem. Eng. Res. Des., 79(8), 965, 2001
  31. Busciglio A, Grisafi F, Scargiali F, Brucato A, Chem. Eng. Sci., 102, 551, 2013
  32. Arjunwadkar SJ, Sarvanan K, Kulkarni PR, Pandit AB, Biochem. Eng. J., 1, 99, 1998