Issue
Korean Journal of Chemical Engineering,
Vol.35, No.1, 53-60, 2018
Permeation and modeling studies on Ge(IV) facilitated transport using trioctylamine through supported liquid membrane
Germanium transport from a solution containing tartaric acid by a flat sheet supported liquid membrane (FSSLM) using trioctylamine (TOA) as a carrier and polytetrafluoroethylene (PTFE) as a membrane was investigated. A mass transfer model was developed to monitor the transport process based on experimental results. The effect of parameters such as feed solution pH, TOA concentration, initial germanium concentration, and strip hydrochloric acid concentration on the germanium flux and the transport percentage were studied. A high permeation was observed at a feed solution pH of 3.00, 40%v/v TOA and 5mg/dm3 Ge4+. At HCl concentrations of 1-3mol/dm3, the germanium transport was complete. Finally, based on the mass transfer model, the aqueous and organic resistance values were 11,802 and 860.85 h/cm, respectively. The validity of the model was investigated by fitting the model and experimental data. The correlation coefficient of 0.99 showed the validity of the model.
[References]
  1. Jorgenson JD, U.S. Department of the Interior, U.S. Geological Survey, U.S. (2000).
  2. Depuydt B, De Jonghe M, De Baets W, Romandic I, Theuwis A, Quaeyhaegens C, Deguet C, Akatsu T, Letertre F, Oxford, pp. 11-I (2007).
  3. Nusen S, Zhu Z, Chairuangsri T, Cheng CY, Hydrometallurgy, 151, 122, 2015
  4. Arroyo F, Fernandez-Pereira C, Ind. Eng. Chem. Res., 47(9), 3186, 2008
  5. Harbuck DD, Judd JC, Behunin DV, Solvent Extr. Ion Exch., 9, 383, 1991
  6. Boateng DA, Neudorf DA, Saleh VN, Google Patents (1990).
  7. De Schepper A, Coussement M, Van Peteghem A, Google Patents (1984).
  8. epouse Bauer DR, Cote G, Fossi P, Marchon B, Google Patents (1983).
  9. de Schepper A, Hydrometallurgy, 1, 291, 1976
  10. Werner A, Mosch M, Haseneder R, Repke JU, Chemie Ingenieur Technik, 87, 1826, 2015
  11. Kuroiwa K, Ohura S, Morisada S, Ohto K, Kawakita H, Matsuo Y, Fukuda D, Miner. Eng., 55, 181, 2014
  12. Takemura H, Morisada S, Ohto K, Kawakita H, Matsuo Y, Fukuda D, J. Chem. Technol. Biotechnol., 88, 1648, 2013
  13. Ozawa I, Saito K, Sugita K, Sato K, Akiba M, Sugo T, J. Chromatogr. A, 888, 43, 2000
  14. Prakorn R, Weerawat P, Ura P, Korean J. Chem. Eng., 23(1), 85, 2006
  15. Weerawat P, Nattaphol V, Ura P, Korean J. Chem. Eng., 20(6), 1092, 2003
  16. Leepipatpiboon N, Pancharoen U, Ramakul P, Korean J. Chem. Eng., 30(1), 194, 2013
  17. Prapasawat T, Ramakul P, Satayaprasert C, Pancharoen U, Lothongkum AW, Korean J. Chem. Eng., 25(1), 158, 2008
  18. Yi MH, Nam SJ, Chung ST, Korean J. Chem. Eng., 14(4), 263, 1997
  19. Soylak M, Yigit S, J. Ind. Eng. Chem., 24, 322, 2015
  20. Gutknecht W, Schuegerl K, Procs. ISEC'88, Moscow, 68 (1988).
  21. Andrianov AM, Avlasovich LM, Khim ZN, Zhurnal Neorganicheskoi Khimii, 12, 2250, 1967
  22. Andrianov A, Avlasovich L, ZHUR PRIKLAD KHIM, 41, 2313, 1968
  23. Xiong J, Liang J, Fan L, Xu K, Huang Y, Energy Procedia, 17, 1965, 2012
  24. Liu F, Yang YZ, Lu YM, Shang K, Lu WJ, Zhao XD, Ind. Eng. Chem. Res., 49(20), 10005, 2010
  25. Merckmillipore, Merckmillipore, Germany (2017).
  26. Chaudry AA, Bukhari N, Mazhar M, Tazeen F, Sep. Purif. Technol., 54(2), 227, 2007
  27. Swain B, Jeong J, Lee JC, Lee GH, J. Membr. Sci., 297(1-2), 253, 2007
  28. Marchese J, Valenzuela F, Basualto C, Acosta A, Hydrometallurgy, 72, 309, 2004
  29. Venkateswaran P, Palanivelu K, Hydrometallurgy, 78, 107, 2005
  30. Everest DA, Harrison JC, J. Chem. Soc. (Resumed), 3752 (1960).
  31. Janjam SVSB, Peddeti S, Roy D, Babu SV, Electrochem. Solid State Lett., 11(12), H327, 2008
  32. Kul M, Topkaya Y, Hydrometallurgy, 92, 87, 2008
  33. Luke CL, Analytica Chimica Acta, 41, 237, 1968
  34. Kemperman AJ, Bargeman D, Vandenboomgaard T, Strathmann H, Sep. Sci. Technol., 31(20), 2733, 1996
  35. Molinari R, De Bartolo L, Drioli E, J. Membr. Sci., 73, 203, 1992