Issue
Korean Journal of Chemical Engineering,
Vol.35, No.1, 44-52, 2018
Prediction of CO2 mass transfer parameters to light oil in presence of surfactants and silica nanoparticles synthesized in cationic reverse micellar system
CO2 miscible injection method combined with surfactants and silica nanoparticles was studied to investigate the effect of these additives on CO2 mass transfer parameters to the light oil, including diffusion coefficient, mass transfer coefficient and solubility. Silica nanoparticles with controlled size distribution were synthesized in isooctane/1- hexanol/CTAB/ammonium hydroxide, a highly-stable reverse micellar system with wo=5. The presence of Si-O-Si and Si-O-H bonds in FTIR spectra of the system revealed that silica nanoparticles are formed by partial hydrolysis of TEOS. Results of DLS indicated that the average size and size distribution of the synthesized nanoparticles were 27.6 nm and 13-76 nm, respectively. Diffusion tests were carried out using CO2 gas and three liquid systems: isooctane/ 1-hexanol, isooctane/1-hexanol/CTAB reverse micellar system without nanoparticles, and isooctane/1-hexanol/CTAB reverse micellar system with nanoparticles. Results of modeling and optimization of the gas-liquid systems under nonequilibrium interface condition, using pressure decay data show that the presence of surfactants and nanoparticles leads to decreased gas diffusion coefficient; while increased interface mass transfer resistance due to presence of aqueous droplets and nanoparticles as well as lower solubility of CO2 in the light oil are the results of applying these additives, which limits their application. The obtained CO2 diffusion coefficients for isooctane/1-hexanol, reverse micellar system without nanoparticles, and reverse micellar system with nanoparticles are 8.5550×10 -8, 8.2216×10 -8, and 8.1114×10 -8 m2/s, respectively.
[References]
  1. kong X, Ohadi MM, Abu-Dhabi International Petroleum Exhibition and Conference, Abu-Dhabi, UAE (2010).
  2. Kapusta S, Balzano L, Riele P, International Petloleum Technology Conference, Bangkok, Thailand (2012).
  3. Fletcher AJP, Davis JP, The SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, U.S.A. (2010).
  4. Sen R, Prog. Energy Combust. Sci., 34(6), 714, 2008
  5. Hirasaki GJ, Miller CA, Puerto M, SPE J., 16, 889, 2011
  6. Kokal S, Al-Kaabi A, World Petroleum Council: Official Publication, 64 (2010).
  7. Olivier JGJ, Janssens-Maenhout G, Muntean M, Peters JAHW, Netherlands (2013).
  8. Roustaei A, Moghadasi J, Bagherzadeh H, Shahrabadi A, SPE International Oilfield Nanotechnology Conference, Noordwijk, The Netherlands (2012).
  9. Hendraningrat L, Shidong L, Torsater O, Torsater S, Moscow, Russia (2012).
  10. Le NYT, Pham DK, Le KH, Nguyen PT, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2(3), 035013, 2011
  11. Maghzi A, Mohammadi S, Ghazanfari MH, Kharrat R, Masihi M, Exp. Therm Fluid Sci., 40, 168, 2012
  12. Maghzi A, Mohebbi A, Kharrat R, Ghazanfari MH, Transp. Porous Media, 87(3), 653, 2011
  13. Karimi A, Fakhroueian Z, Bahramian A, Khiabani NP, Darabad JB, Azin R, Arya S, Energy Fuels, 26(2), 1028, 2012
  14. Ju B, Fan T, Li Z, J. Pet. Sci. Eng., 86-87, 206, 2012
  15. Shah RD, SPE annual technical conference and exhibition (2009).
  16. Zhang T, Davidson A, Bryant SL, Huh C, Tulsa, Oklahoma, U.S.A. (2010).
  17. Qiu F, Mamora D, Calgary, Alberta, Canada (2010).
  18. Qiu F, Calgary, Alberta, Canada (2010).
  19. Malhotra V, Thesis, University of Waterloo (2009).
  20. Solanki JN, Murthy ZVP, Ind. Eng. Chem. Res., 50(22), 12311, 2011
  21. Eastoe J, Hollamby MJ, Hudson L, Adv. Colloid Interface Sci., 128-130, 5, 2006
  22. Guo P, Wang ZH, Shen PP, Du JF, Ind. Eng. Chem. Res., 48(19), 9023, 2009
  23. Sheikha H, Pooladi-Darvish M, Mehrotra AK, Energy Fuels, 19(5), 2041, 2005
  24. Zhang YP, Hyndman CL, Maini BB, J. Pet. Sci. Eng., 25(1-2), 37, 2000
  25. Riazi MR, J. Pet. Sci. Eng., 14(3-4), 235, 1996
  26. Yang CD, Gu YA, Ind. Eng. Chem. Res., 44(12), 4474, 2005
  27. Etminan SR, Pooladi-Darvish M, Maini BB, Chen ZX, Fuel, 105, 672, 2013
  28. Rasmussen ML, Civan F, AIChE J., 55, 1, 2009
  29. Trevisan OV, Araujo SV, Santos RGD, Vargas JA, Offshore Technology Conference (2013).
  30. Civan F, Rasmussen ML, SPE J., 6(2), 171, 2001
  31. Civan F, Rasmussen ML, SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma (2002).
  32. Civan F, Rasmussen ML, SPE J., 11(1), 71, 2006
  33. Haghtalab A, Osfouri S, Sep. Sci. Technol., 38(3), 553, 2003
  34. Yao L, Xu G, Dou W, Bai Y, Colloids Surf. A: Physicochem. Eng. Asp., 316, 8, 2008
  35. Arriagada FJ, Osseo-Asare K, Colloids Surface, 69, 105, 1992
  36. Azin R, Mahmoudy M, Raad SMJ, Osfouri S, Central European J. Eng., 3, 585, 2013
  37. Stehfest H, Communication of the ACM, 13(1), 47, 1970
  38. Lv D, Wen W, Huang X, Bai J, Mi J, Wu S, Yang Y, J. Mater. Chem., 21, 9506, 2011
  39. Arriagada FJ, Osseoasare K, J. Colloid Interface Sci., 170(1), 8, 1995
  40. Gholami Y, Azin R, Fatehi R, Osfouri S, Bahadori A, J. Mol. Liq., 201, 23, 2015
  41. Gholami Y, Azin R, Fatehi R, Osfouri S, J. Mol. Liq., 202, 31, 2015
  42. Drummond SE, PhD Thesis, Pennsylvania State University (1981).
  43. Linek V, Benes P, Chem. Eng. Sci., 31(11), 1037, 1976
  44. Junker BH, Hatton TA, Wang DI, Biotechnol. Bioeng., 35(6), 578, 1990
  45. Yoshida F, Yamane T, Miyamoto Y, Ind. Eng. Chem. Process Des. Dev., 9(4), 570, 1970
  46. McMillan JD, Wang DIC, Ann. N. Y. Acad. Sci., 506(1), 569, 1987
  47. Mimura A, Kawano T, Kodaira R, J. Ferment. Technol., 47, 229, 1969
  48. Zhang JF, Pan ZJ, Liu KY, Burke N, Energy Fuels, 27(5), 2741, 2013