Issue
Korean Journal of Chemical Engineering,
Vol.35, No.1, 34-43, 2018
Degradation of drag reducing polymers in aqueous solutions
The performance of drag reducing polymers in turbulent flow is restricted by their mechanical degradation. This study examines how the working fluid can affect the degradation behavior of diluted drag reducing polymeric solutions. Solutions having different proportions of tap water and de-ionized water served as the working fluids. Three commercially available water soluble polymeric agents, namely, an anionic copolymer of polyacrylamide, xanthan gum, and polyethylene oxide, were then added to these solutions. All experiments had identical flow rates corresponding to turbulent conditions in a laboratory scale pipe line. Variation of pressure drop in the pipe line was then measured for 2 hours. It was found that polymer degradation is accelerated in tap water solutions compared to that in de-ionized water solutions. However, this is dependent on the specification of the polymer used, namely, the molecular weight of the polymer and the rigidity of its molecular backbone. Furthermore, a new mathematical relation has been developed to investigate degradation of the polymers over time.
[References]
  1. Roy A, Larson RG, Appl. Rheol., 15, 370, 2005
  2. Karami HR, Mowla D, J. Non-Newton. Fluid Mech., 177-178, 37, 2012
  3. Toms BA, in: Proceedings of the First International Congress on Rheology, Amsterdam, 135 (1948).
  4. Reis LG, Oliveira IP, Pires RV, Lucas EF, Colloids Surf. A: Physicochem. Eng. Asp., 502, 121, 2016
  5. Edomwonyi-Otu L, Chinaud M, Angeli P, Exp. Therm. Fluid Sci., 64, 164, 2015
  6. Sreedhar I, Jain G, Srinivas P, Reddy KSK, Korean J. Chem. Eng., 31(4), 568, 2014
  7. Regupathi I, JagadeeshBabu PE, Chitra M, Murugesan T, Korean J. Chem. Eng., 27(4), 1205, 2010
  8. Wyatt NB, Gunther CM, Liberatore MW, J. Non-Newton. Fluid Mech., 166(1-2), 25, 2011
  9. Choi HJ, Jhon MS, Ind. Eng. Chem. Res., 35(9), 2993, 1996
  10. Kato H, Miura K, Yamaguchi H, Miyanaga M, J. Mar. Sci. Technol., 3, 122, 1998
  11. Pinho FT, Li CF, Younis BA, Sureshkumar R, J. Non-Newton. Fluid Mech., 154(2-3), 89, 2008
  12. Li CF, Sureshkumar R, Khomami B, J. Non-Newton. Fluid Mech., 140(1-3), 23, 2006
  13. Bhowmick SK, Gebel C, Reitzer H, Rheol. Acta, 14, 1026, 1975
  14. White CM, Mungal MG, Annu. Rev. Fluid Mech., 40, 235, 2008
  15. Virk PS, AIChE J., 21, 625, 1975
  16. Lumley JL, Annu. Rev. Fluid Mech., 1, 367, 1969
  17. Joseph D, Riccius O, Arney M, J. Fluid Mech., 171, 309, 1986
  18. De Gennes P, Physica A, 140, 9, 1986
  19. Han W, Dong Y, Choi H, Proceses, 5, 24, 2017
  20. Abubakar A, Al-Wahaibi T, Al-Wahaibi Y, Al-Hashmi AR, Al-Ajmi A, Chem. Eng. Res. Des., 92(11), 2153, 2014
  21. Karami HR, Mowla D, J. Petrol. Sci. Eng., 111, 78, 2013
  22. Karami HR, Keyhani M, Mowla D, J. Petrol. Sci. Eng., 138, 104, 2016
  23. Rouse PE, Sittel K, J. Appl. Phys., 24, 690, 1953
  24. Kim C, Jo D, Choi H, Kim C, Jhon M, Polym. Test, 20, 43, 2000
  25. Sohn JI, Kim CA, Choi HJ, Jhon MS, Carbohydr. Polym., 45, 61, 2001
  26. Pereira AS, Andrade RM, Soares EJ, J. Non-Newton. Fluid Mech., 202, 72, 2013
  27. Pereira AS, Soares EJ, J. Non-Newton. Fluid Mech., 179-180, 9, 2012
  28. den Toonder JMJ, Draad AA, Kuiken GDC, Nieuwstadt FTM, Appl. Sci. Res., 55, 63, 1995
  29. Hong CH, Choi HJ, Zhang K, Renou F, Grisel M, Carbohydr. Polym., 121, 342, 2015
  30. Sandoval GAB, Soares EJ, Rheol. Acta, 55(7), 559, 2016
  31. Bizotto VC, Sabadini E, J. Appl. Polym. Sci., 110(3), 1844, 2008
  32. Rho T, Park J, Kim C, Yoon HK, Suh HS, Polym. Degrad. Stabil., 51, 287, 1996
  33. Kulicke WM, Kotter M, Grager H, in: Polymer Characterization/Polymer Solutions, Springer Berlin Heidelberg, Berlin, Heidelberg, 1 (1989).
  34. Kim NJ, Kim S, Lim SH, Chen K, Chun W, Int. Commun. Heat Mass Transf., 36, 1014, 2009
  35. Deshmukh SR, Singh RP, J. Appl. Polym. Sci., 33, 1963, 1987
  36. Hong CH, Choi HJ, Kim JH, J. Mech. Sci. Technol., 22, 1908, 2008
  37. Choi HJ, Kim CA, Sohn JI, Jhon MS, Polym. Degrad. Stabil., 69, 341, 2000
  38. Choi HJ, Lim ST, Lai PY, Chan CK, Phys. Rev. Lett., 89, 088302, 2002
  39. Matras Z, Kopiczak B, Chem. Eng. Res. Des., 96, 35, 2015
  40. Lee W, Vaseleski R, Metzner A, AIChE J., 20, 128, 1974
  41. Reddy GV, Singh RP, Rheol. Acta, 24, 296, 1985
  42. Deshmukh S, Chaturvedi P, Singh R, J. Appl. Polym. Sci., 30, 4013, 1985
  43. Deshmukh S, Singh R, J. Appl. Polym. Sci., 32, 6163, 1986
  44. Bewersdorff HW, Singh RP, Rheol. Acta, 27, 617, 1988
  45. Bello JB, Muller AJ, Saez AE, Polym. Bull., 36(1), 111, 1996
  46. Brostow W, Ertepinar H, Singh RP, Macromol., 23, 5109, 1990
  47. Muller G, Aurhourrache M, Lecourtier J, Chauveteau G, Int. J. Biol. Macromol., 8, 167, 1986
  48. Mohsenipour AA, Pal R, Prajapati K, Can. J. Chem. Eng., 91(1), 181, 2013
  49. Cho YI, Hartnett JP, Park YS, Chem. Eng. Commun., 21, 369, 1983