Issue
Korean Journal of Chemical Engineering,
Vol.35, No.1, 20-33, 2018
A new approach to developing a conceptual topside process design for an offshore platform
This study introduces a new approach for the conceptual design of an offshore topside process, satisfying environmental standards, saving utility consumption, and consequently, maximizing economic profit. Twelve individual processes are modeled as a case study, based on sets of combinations between four topside process configurations and three individual production scenarios (i.e., peak oil, peak gas, and peak water) over the life cycle of an oil reservoir. Then, the simulation results of these models are analyzed based on economic profit. In particular, the simulation program is integrated with a mixed-integer non-linear programming algorithm to optimize the design and operating variables (e.g., operating pressures of the multi-stage separators) in order to maximize the economic profit of the platform. Lastly, an economic feasibility study is performed for the design of a profitable and eco-friendly offshore platform.
[References]
  1. KEMCO, http://www.energy.or.kr/web/kem_home_new/energy_issue/mail_vol19/pdf/publish_02_201506.pdf (2015).
  2. Conti J, International Energy Outlook 2016, U.S. Energy Information Administration, U.S.A. (2016).
  3. Oil price, http://oilprice.com/Energy/Energy-General/Gulf-Of-Mexico-Breakeven-Falls-Below-50-Per-Barrel.html (2017).
  4. Bahadori A, Vuthaluru HB, Mokhatab S, ASIA-PACIFIC J. Chem. Eng., 3, 380, 2008
  5. Al-Ameeri RS, Middle East Tech. Conf. Exhib. (2013).
  6. Kim IH, Dan S, Kim H, Rim HR, Lee JM, Yoon ES, Ind. Eng. Chem. Res., 53(21), 8810, 2014
  7. IFP school, http://www.ifp-school.com/upload/docs/application/pdf/2015-02/3_main_steps_oil_gas_field_development.pdf (2015).
  8. Nguyen TV, Fulop TG, Breuhaus P, Elmegaard B, Energy, 73, 282, 2014
  9. Nordvag OK, Master’s Thesis, NTNU, Norway (2012).
  10. Malhotra R, Singh N, Singh Y, Comput. Inf. Sci., 4, 39, 2011
  11. Ashour I, Al-Rawahi N, Fatemi A, Vakili-Nezhaad G, Applications of Equations of State in the Oil and Gas Industry, InTech (2011).
  12. Kylling Ø, Master’s Thesis, Institutt for teknisk kybernetikk, Norway (2009).
  13. Fulgueras AM, Poudel J, Kim DS, Cho J, Korean J. Chem. Eng., 33(1), 46, 2016
  14. Moghadam N, Samadi M, Int. J. Chem. Eng. Appl., 3, 461, 2012
  15. Lidderdale T, Fuel Technol. Manage., 6, 47, 1999
  16. Isa MA, Eldemerdash U, Nasrifar K, Chem. Eng. Res. Des., 91(9), 1731, 2013
  17. Vafajoo L, Ganjian K, Fattahi M, J. Pet. Sci. Eng., 90, 107, 2012
  18. Huang D, Allen TT, Notz WI, Zeng N, J. Glob. Optim., 34, 441, 2006
  19. Aspelund A, Gundersen T, Myklebust J, Nowak MP, Tomasgard A, Comput. Chem. Eng., 34(10), 1606, 2010
  20. Park S, Lee Y, Kim G, Hwang S, Korean J. Chem. Eng., 33(12), 3417, 2016
  21. IEA, http://www.iea.org/media/statistics/surveys/prices/mps.pdf (2017).
  22. IEA, https://www.eia.gov/dnav/ng/hist/rngwhhdd.htm (2017).
  23. IEA, https://www.eia.gov/electricity/monthly/pdf/epm.pdf (2017).
  24. Yeniay O, Math. Comput. Appl., 10, 45, 2005
  25. Manning FS, Thompson RE, Oilfield processing of petroleum: Crude oil (Vol. 2), Pennwell books, 167 (1995).
  26. EIA, Engineering Economic Analysis Guide : Liquid Fuels Technologies, U.S. Energy Information Administration, U.S.A. (2015).
  27. AspenTech, Aspen Capital Cost Estimator User’s Guide, Aspen Technology, Inc., U.S.A. (2012).
  28. Permatasari A, Fasahati P, Ryu JH, Liu JJ, Korean J. Chem. Eng., 33(12), 3381, 2016
  29. YCHARTS, https://ycharts.com/indicators/japan_liquefied_natural_gas_import_price (2017).