Issue
Korean Journal of Chemical Engineering,
Vol.34, No.10, 2780-2786, 2017
Performance evaluation of rotating photoelectrocatalytic reactor for enhanced degradation of methylene blue
Enhanced oxidation of organic pollutant, methylene blue (MB) was conducted using a newly designed rotating photoelectrocatalytic process (PECP), compared with photocatalysis. A significant synergy of photoelectrocatalytic reaction was observed such that the degradation of methylene blue (MB) by the photoelectrocatalytic mode was 80% higher than that (61.6%) of photocatalytic mode. To confirm the potentials in the application of water treatment, the effects of various parameters affecting reaction performance were studied with the newly designed rotating photoelectrocatalytic reactor consisting of TiO2 nanotubes and Ti lath as the photoanode and cathode, respectively, for applying electrical potential under UV irradiation. As the result of parameter studies, such as applied electrical potential (voltage), UV light intensity, rotating speeds, the highest degradation efficiencies of MB were achieved at 2.5 V or less (electrical potential), 90 rpm (rotating speed), and higher UV intensity. In addition, the stability and activity of TiO2 nanotubes electrode were studied through repeated experiments and showed a good performance, excellent stability, and reliability in the rotating photoelectrocatalytic process (PECP). This study provides an basis for the development of a rotating PECP to water treatment.
[References]
  1. Daghrir R, Drougi P, Robert D, J. Photochem. Photobiol. A-Chem., 238, 41, 2012
  2. Ochiai T, Fujishima A, J. Photochem. Photobiol. C: Photochem. Reviews, 12, 247, 2012
  3. Lazar MA, Varghese S, Nair SS, Catalysts, 2, 572, 2012
  4. Zhu A, Zhao Q, Li X, Shi Y, Appl. Mater. Interf., 6, 671, 2013
  5. Wang X, Sun L, Zhang S, Wang X, Appl. Mater. Interf., 6, 1361, 2014
  6. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Nano Lett., 5, 191, 2005
  7. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA, Sol. Energy Mater. Sol. Cells, 90(14), 2011, 2006
  8. Paulose M, Mor GK, Varghese OK, Shankar K, Grimes CA, J. Photochem. Photobiol. A-Chem., 178, 8, 2006
  9. Oh S, Nam W, Joo H, Sarp S, Cho J, Lee CH, Yoon J, Sol. Energy, 85(9), 2256, 2011
  10. Yoon J, Bae S, Shim E, Joo H, J. Power Sources, 189(2), 1296, 2009
  11. Bae S, Shim E, Yoon J, Joo H, J. Power Sources, 185(1), 439, 2008
  12. Bae S, Kang J, Shim E, Yoon J, Joo H, J. Power Sources, 179(2), 863, 2008
  13. Park M, Heo A, Shim E, Yoon J, Kim H, Joo H, J. Power Sources, 95, 5144, 2010
  14. Yoon J, Shim E, Bae S, Joo H, J. Hazard. Mater., 161(2-3), 1069, 2009
  15. Kim Y, Joo H, Her N, Yoon Y, Lee CH, Yoon J, Chem. Eng. J., 229, 66, 2013
  16. Im JK, Yoon J, Her N, Han J, Zoh KD, Yoon Y, Sep. Purif. Technol., 141, 1, 2015
  17. Kim Y, Joo H, Her N, Yoon Y, Sohn J, Kim S, Yoon J, J. Hazard. Mater., 288, 124, 2015
  18. Hu X, Ji H, Chang F, Luo Y, Catal. Today, 224, 33, 2014
  19. Quan X, Yang S, Ruan X, Zhao H, Environ. Sci. Technol., 39, 3770, 2005
  20. Song H, Shang J, Ye JH, Li Q, Thin Solid Films, 551, 158, 2014
  21. Hayden SC, Allam NK, El-Sayed MA, J. Am. Chem. Soc., 132(41), 14406, 2010
  22. Xie YB, Li XZ, J. Hazard. Mater., 198, 526, 2006
  23. Lin WC, Chen CH, Tang HY, Hsiao YC, Pan JR, Hu CC, Huang C, Appl. Catal. B: Environ., 140-141, 32, 2013
  24. Cho K, Hoffmann MR, Chem. Mater., 27, 2224, 2015
  25. Martinez-Huitle CA, Ferro S, Chem. Soc. Rev., 35, 1324, 2006
  26. Li JQ, Zheng L, Li LP, Xian YZ, Jin LT, J. Hazard. Mater., 139(1), 72, 2007
  27. Konstantinou IK, Albanis TA, Appl. Catal. B: Environ., 49(1), 1, 2004
  28. Wang N, Li XY, Wang YX, Quan X, Chen GH, Chem. Eng. J., 146(1), 30, 2009
  29. Chong MN, Jin B, Chow CWK, Saint C, Water Res., 44, 2997, 2010
  30. Xu Y, He Y, Cao X, Zhong D, Jia J, Environ. Sci. Technol., 42, 2612, 2008