Issue
Korean Journal of Chemical Engineering,
Vol.34, No.10, 2756-2763, 2017
Gasification characteristics of glass fiber-reinforced plastic (GFRP) wastes in a microwave plasma reactor
The effects of plasma power (1-1.8kW), oxygen/fuel (0-2.5) and steam/fuel ratios (0-1) on the gasification characteristics of glass fiber-reinforced plastic (GFRP) wastes have been determined in a microwave plasma reactor. GFRP, which is thermosetting plastic composed of glass fibers embedded within a polymer matrix, was used as an experimental sample. While carbon conversion increased with oxygen/fuel ratio, syngas heating value and cold gas efficiency decreased with oxygen supply due to the onset of combustion. With increasing steam/fuel ratio, water-gas shift and ion-reforming reaction favored higher concentration of H2. Increasing the plasma power was found to promote the conversion of carbon dioxide to carbon monoxide. The char surfaces of GFRP that were subjected to variable power and oxygen supplies were analyzed by scanning electron microscopy.
[References]
  1. Jahn B, Witten E, The global CRP 2013 Report (Market development, trends challenges and opportunities), Sept (2013).
  2. Gray L, MANE-6960- Solid and Hazardous waste prevention and control Engineering, Renselaer Hartford, U.S.A. (2014).
  3. Jung SH, Cho MH, Kang BS, Kim JS, Fuel Process. Technol., 91(3), 277, 2010
  4. Bae JS, Lee DW, Park SJ, Lee YJ, Hong JC, Han C, Choi YC, Korean J. Chem. Eng., 30(2), 321, 2013
  5. Noma A, Mawatari M, Goto C, Hoshi Y, Inoue K, Yoshikawa K, Ind. Eng. Chem. Res., 45(14), 5127, 2006
  6. Kuo YM, Wang CT, Tsai CH, Wang LC, J. Hazard. Mater., 162(1), 469, 2009
  7. Uhm HS, Hong YC, Shin DH, Plasma Sources Sci. Technol., 15(2), S26, 2006
  8. Roth JR, Industrial Plasma Engineering, London: Institute of Physics (1945).
  9. Hong YC, Lee SJ, Shin DH, Kim YJ, Lee BJ, Cho SY, Chang HS, Energy, 47(1), 36, 2012
  10. Yoon SJ, Lee JG, Int. J. Hydrog. Energy, 37(22), 17093, 2012
  11. Shie JL, Chen LX, Lin KL, Chang CY, Energy, 66, 82, 2014
  12. Tang L, Huang H, Fuel, 84(16), 2055, 2005
  13. Yoon SJ, Yun YM, Seo MW, Kim YK, Ra HW, Lee JG, Int. J. Hydrog. Energy, 38, I4559, 2013
  14. Basu P, Combustion and gasification in fluidized beds, Boca Raton: Taylor and Francis (2006).
  15. Huang J, Dincer I, Int. J. Hydrog. Energy, 39(7), 3294, 2014
  16. Levko D, Shchedrin A, Chernyak V, Olszewski S, Nedybaliuk O, J. Phys. D-Appl. Phys., 44, 145206, 2011
  17. Hrabovsky M, The Open Plasma Physics J., 2, 99 (2009).
  18. Zhang Q, Dor L, Fenigshtein D, Yang W, Blasiak W, Appl. Energy (2011), DOI:10.1016/j.penergy.2011.01.041.
  19. Govind R, Shah J, AIChE J., 30(1), 79, 1984
  20. Moon S, Choe W, Phys. Plasma, 9, 4045, 2002
  21. Spencer L, Gallimore A, Plasma Chem. Plasma Process (2010), DOI:10.1007/s1 1090-010-9273-0.
  22. Liu CJ, Xu GH, Wang TM, Fuel Process. Technol., 58(2-3), 119, 1999
  23. Sharma RK, Wooten JB, Baliga VL, Hajaligol MR, Fuel, 80, 1825, 2001
  24. Sukiran MA, Kheang LS, Bakar NA, May CY, Am. J. Appl. Sci., 8(10), 984, 2011
  25. Bae JS, Lee DW, Lee YJ, Park SJ, Park JH, Hong JC, Kim JG, Yoon SP, Kim HT, Han C, Choi YC, Powder Technol., 254, 72, 2014
  26. Kelly RM, Kennerley JR, Rudd CD, Compos. Sci. Technol., 60, 509, 2000
  27. Lopez FA, Martin MI, Alguacil FJ, Rincon JM, Centeno TA, Romero M, J. Anal. Appl. Pyrolysis, 93, 104, 2012