Issue
Korean Journal of Chemical Engineering,
Vol.34, No.10, 2715-2724, 2017
A modified scaled variable reduced coordinate (SVRC)-quantitative structure property relationship (QSPR) model for predicting liquid viscosity of pure organic compounds
Liquid viscosity is an important physical property utilized in engineering designs for transportation and processing of fluids. However, the measurement of liquid viscosity is not always easy when the materials have toxicity and instability. In this study, a modified scaled variable reduced coordinate (SVRC)-quantitative structure property relationship (QSPR) model is suggested and analyzed in terms of its performance of prediction for liquid viscosity compared to the conventional SVRC-QSPR model and the other methods. The modification was conducted by changing the initial point from triple point to ambient temperature (293 K), and assuming that the liquid viscosity at critical temperature is 0 cP. The results reveal that the prediction performance of the modified SVRC-QSPR model is comparable to the other methods as showing 7.90% of mean absolute percentage error (MAPE) and 0.9838 of R2. In terms of both the number of components and the performance of prediction, the modified SVRC-QSPR model is superior to the conventional SVRC-QSPR model. Also, the applicability of the model is improved since the condition of the end points of the modified model is not so restrictive as the conventional SVRC-QSPR model.
[References]
  1. Poling BE, Prausnitz JM, O’Connell JP, The properties of gases and liquids, Mcgraw-hill, NY (2001).
  2. Ghosh T, Prasad D, Dutt N, Rani K, Viscosity of liquids: Theory, estimation, experiment, and data, Springer, NY (2007).
  3. Hobson M, Weber JH, AIChE J., 2, 354, 1956
  4. Constantinou L, Gani R, Oconnell JP, Fluid Phase Equilib., 103(1), 11, 1995
  5. Elbro HS, Fredenslund A, Rasmussen P, Ind. Eng. Chem. Res., 30, 2576, 1991
  6. Park BH, Yeom MS, Yoo KP, Lee CS, Korean J. Chem. Eng., 15(3), 246, 1998
  7. Park JY, Paul DR, J. Membr. Sci., 125(1), 23, 1997
  8. Sola D, Ferri A, Banchero M, Manna L, Sicardi S, Fluid Phase Equilib., 263(1), 33, 2008
  9. Duchowicz PR, Talevi A, Bruno-Blanch LE, Castro EA, Biorg. Med. Chem., 16, 7944, 2008
  10. Dadmohammadi Y, Gebreyohannes S, Neely BJ, Gasem KAM, Fluid Phase Equilib., 409, 318, 2016
  11. Godavarthy SS, Robinson RL, Gasem KAM, Fluid Phase Equilib., 246(1-2), 39, 2006
  12. Katritzky AR, Lobanov VS, Karelson M, Chem. Soc. Rev., 24, 279, 1995
  13. Maadani H, Salahinejad M, Ghasemi J, SAR QSAR Environ. Res., 26, 1033, 2015
  14. Wang BB, Zhou LL, Xu KL, Wang QS, Ind. Eng. Chem. Res., 56(1), 47, 2017
  15. Yee LC, Wei YC, Current modeling methods used in qsar/ qspr, Wiley-VCH: Weinheim, Germany (2012).
  16. Aiken LS, West SG, Pitts SC, Multiple linear regression: Testing and interpreting interactions, Sage, CA (1991).
  17. Ammi Y, Khaouane L, Hanini S, Korean J. Chem. Eng., 32(11), 2300, 2015
  18. Babaei AA, Khataee A, Ahmadpour E, Sheydaei M, Kakavandi B, Alaee Z, Korean J. Chem. Eng., 33(4), 1352, 2016
  19. Mohagheghian E, Zafarian-Rigaki H, Motamedi-Ghahfarrokhi Y, Hemmati-Sarapardeh A, Korean J. Chem. Eng., 32(10), 2087, 2015
  20. Luckas M, Lucas K, AIChE J., 32, 139, 1986
  21. Monnery WD, Svrcek WY, Mehrotra AK, Can. J. Chem. Eng., 73(1), 3, 1995
  22. Jegadeesan A, Structure-based generalized models for selected purefluid saturation properties, Oklahoma State University, M.S. Thesis (2006).
  23. Shaver RD, New scaled-variable-reduced-coordinate framework for correlation of pure fluid saturation properties, Oklahoma State University, M.S. Thesis (1990).
  24. Shaver R, Robinson R, Gasem K, Fluid Phase Equilib., 64, 141, 1991
  25. Shaver R, Robinson R, Gasem K, Fluid Phase Equilib., 78, 81, 1992
  26. McHugh M, Krukonis V, Supercritical fluid extraction: Principles and practice, Elsevier (2013).
  27. Sauerbrei W, Schumacher M, Stat. Med., 11, 2093, 1992
  28. Steyerberg EW, Eijkemans MJ, Habbema JDF, J. Clin. Epidemiol., 52, 935, 1999
  29. O’brien RM, Quality & Quantity, 41, 673, 2007
  30. Dutt NVK, Ravikumar YVL, Rani KY, Chem. Eng. Commun., 200(12), 1600, 2013
  31. Zhao YS, Zhang XP, Deng LY, Zhang SJ, Comput. Chem. Eng., 92, 37, 2016
  32. Chen BK, Liang MJ, Wu TY, Wang HP, Fluid Phase Equilib., 350, 37, 2013
  33. Gardas RL, Coutinho JAP, Fluid Phase Equilib., 266(1-2), 195, 2008