Issue
Korean Journal of Chemical Engineering,
Vol.34, No.10, 2710-2714, 2017
Spectroscopic investigation, cage occupancy, and gas storage capacity of hydroquinone clathrates formed with H2S-N2 and COS-N2 binary gas mixtures
The objective of this investigation was to determine whether hydroquinone (HQ) can form clathrate compounds with two sulfides (hydrogen sulfide (H2S) and carbonyl sulfide (COS)) at their diluted concentrations. Hydroquinone samples obtained at ambient temperature and at two pressures (40 and 80 bar) for binary gas mixtures consisting of H2S-N2 and COS-N2, were analyzed using solid-state 13C NMR and Raman spectroscopy. An elemental analyzer was also used to obtain quantitative information regarding the kind and amount of gas captured in the solid samples. Results show that H2S can be concentrated within the solid clathrate from H2S-containing gas, while COS is little captured after reaction with the COS-containing gas. This suggests that the HQ clathrate can be used to remove H2S, and that selective separation can be achieved when two sulfides of H2S and COS coexist. On the basis of the calculated cage occupancies of the gas components in the solid clathrate, the enclathration preference of the gas components used in this research was found to be the order of H2S>N2>COS.
[References]
  1. Beer JM, Prog. Energy Combust. Sci., 26, 301, 2000
  2. Chauk SS, Agnihotri R, Jadhav RA, Misro SK, Fan LS, AIChE J., 46(6), 1157, 2000
  3. An H, Yang WM, Chou SK, Chua KJ, Appl. Energy, 99, 363, 2012
  4. Jiaqiang E, Liu T, Yang WM, Li J, Gong JK, Deng YW, Energy Conv. Manag., 117, 410, 2016
  5. Liu H, Ma JEX, Xie C, Dry Technol., 34, 1397, 2016
  6. Huhtala A, Remes P, Energy Policy, 105, 320, 2017
  7. Tola V, Pettinau A, Appl. Energy, 113, 1461, 2014
  8. Matson SL, Herrick CS, Ward WJ, Ind. Eng. Chem. Process Des. Dev., 16, 370, 1977
  9. Watts SF, Atmos. Environ., 34, 761, 2000
  10. Rosso I, Galletti C, Bizzi M, Saracco G, Specchia V, Ind. Eng. Chem. Res., 42(8), 1688, 2003
  11. Gupta R, Gangwal SK, Jain SC, Energy Fuels, 6, 21, 1992
  12. Miura K, Mae K, Inoue T, Yoshimi T, Nakagawa H, Hashimoto K, Ind. Eng. Chem. Res., 31, 415, 1992
  13. Yan G, Weng H, Yang J, Bao W, Gao Y, Yin Y, Korean J. Chem. Eng., 33(8), 2359, 2016
  14. Park YC, Lee JS, Moon JH, Min BM, Shim DM, Sung HJ, Korean J. Chem. Eng., 34(3), 921, 2017
  15. Sakanishi K, Wu ZH, Matsumura A, Saito I, Hanaoka T, Minowa T, Tada M, Iwasaki T, Catal. Today, 104(1), 94, 2005
  16. Dou J, Zhao Y, Tahmasebi A, Yu J, Korean J. Chem. Eng., 33(10), 2849, 2016
  17. Sloan ED, Koh CA, Clathrate Hydrates of Natural Gases, 3rd Ed.; CRC Press, Boca Raton, FL (2008).
  18. Kang SP, Lee H, Environ. Sci. Technol., 34, 4397, 2000
  19. Ma CF, Chen GJ, Wang F, Sun CY, Guo TM, Fluid Phase Equilib., 191(1-2), 41, 2001
  20. Seol J, Lee JW, Shin WC, Koh DY, Lee J, Lee H, J. Phys. Chem., 114, 17960, 2010
  21. Kang SP, Lee JW, Ind. Eng. Chem. Res., 52(1), 303, 2013
  22. Lee JW, Lee Y, Takeya S, Kawamura T, Yamamoto Y, Lee YJ, Yoon JH, J. Phys. Chem. B, 114(9), 3254, 2010
  23. Lee JW, Choi KJ, Lee Y, Yoon JH, Chem. Phys. Lett., 528, 34, 2012
  24. Lee JW, Kang SP, Yoon JH, J. Phys. Chem., 118, 6059, 2014
  25. Lee JW, Kang SP, Yoon JH, J. Phys. Chem., 118, 7705, 2014
  26. Mohammadi AH, Richon D, J. Chem. Eng. Data, 54(8), 2338, 2009
  27. Liang SA, Kusalik PG, J. Phys. Chem. B, 114(29), 9563, 2010
  28. Mohammadi-Manesh H, Alavi S, Woo TK, Najafi B, Phys. Chem. Chem. Phys., 13, 2367, 2011
  29. Atwood JL, Davies JED, MacNicol DD, Inclusion Compounds, Academic Press, Florida (1984).
  30. Lee JW, Poudel J, Cha M, Yoon SJ, Yoon JH, Energy Fuels, 30(9), 7604, 2016
  31. Ripmeester JA, Chem. Phys. Lett., 74, 536, 1980
  32. Kubinyi MJ, Keresztury G, Mikrochim. Acta, 14, 525, 1997
  33. Lee JW, Yoon JH, J. Phys. Chem., 115, 22647, 2011
  34. Anderson A, Demoor S, Hanson RC, Chem. Phys. Lett., 140, 471, 1987
  35. Maki AG, Wells JS, Burkholder JB, J. Mol. Spectrosc., 147, 173, 1991