Issue
Korean Journal of Chemical Engineering,
Vol.34, No.10, 2648-2661, 2017
Mathematical modelling of sustainable wastewater reuse networks considering CO2 emissions
Water resource management poses a challenge in the process industry because a large amount of water must be used, even when prices increase. Companies struggle to minimize consumption by reusing wastewater, and the resulting water-reuse-network problem has been actively investigated. With the rising impact of global climate change, it is necessary to develop a sustainable methodology to reduce carbon dioxide emissions in the process industry. This paper proposes a mathematical model for sustainable water reuse networks that explicitly considers CO2 emissions. To construct a sustainable network, emissions due to the construction and operation of the water network and additional water demand due to CO2 capture facilities are incorporated. Actual case studies of steel manufacturing processes and eco-industrial parks are presented to illustrate the applicability of the model.
[References]
  1. Lazarova V, Choo KH, Cornel P, Water-Energy interactions in water reuse, IWA Publishing, London (2012).
  2. Jimenez B, Asano T, Water Reuse: an international survey of current practice, issues and needs, IWA Publishing, London (2008).
  3. Bagajewicz M, Comput. Chem. Eng., 24(9-10), 2093, 2000
  4. Ahmetovic E, Ibric N, Kravanja Z, Grossmann IE, Comput. Chem. Eng., 82, 144, 2015
  5. Khor CS, Chachuat B, Shah N, Ind. Eng. Chem. Res., 53(25), 10257, 2014
  6. Grossmann IE, Martin M, Yang L, Curr. Opin. Chem. Eng., 5, 101, 2014
  7. Linnhoff B, Hindmarch E, Chem. Eng. Sci., 38, 745, 1983
  8. Wang YP, Smith R, Chem. Eng. Sci., 49(7), 981, 1994
  9. Doyle SJ, Smith R, Proc. Saf. Environ. Prot, 75, 181, 1997
  10. El-Halwagi MM, Gabriel F, Harell D, Ind. Eng. Chem. Res., 42(19), 4319, 2003
  11. Feng X, Bai J, Zheng XS, Chem. Eng. Sci., 62(8), 2127, 2007
  12. El-Halwagi MM, Manousiothakis V, Chem. Eng. Sci., 45, 2813, 1990
  13. Ng DKS, Foo DCY, Tan RR, Ind. Eng. Chem. Res., 46(26), 9114, 2007
  14. Alwi SRW, Manan ZA, Ind. Eng. Chem. Res., 47(8), 2762, 2008
  15. Foo DCY, Ind. Eng. Chem. Res., 48(11), 5125, 2009
  16. Takama N, Kuriyama N, Kuriyama S, Umeda T, Comput. Chem. Eng., 4, 251, 1980
  17. Galan B, Grossmann IE, Ind. Eng. Chem. Res., 37(10), 4036, 1998
  18. Savelski M, Bagajewicz M, Chem. Eng. Sci., 58(23-24), 5349, 2003
  19. Shelley MD, El-Halwagi MM, Comput. Chem. Eng., 24(9-10), 2081, 2000
  20. Ponce-Ortega JM, Hortua AC, El-Halwagi M, Jimenez-Gutierrez A, AIChE J., 55(9), 2329, 2009
  21. Alva-Argaez A, Kokossis AC, Smith R, Chem. Eng. J., 128(1), 33, 2007
  22. Ahmetovic E, Grossmann IE, AIChE J., 57(2), 434, 2011
  23. Ramos MA, Boix M, Aussel D, Montastruc L, Domenech S, Comput. Chem. Eng., 87, 190, 2016
  24. Alnouri SY, Linke P, El-Halwagi MM, Comput. Chem. Eng., 91, 289, 2016
  25. Rubio-Castro E, Ponce-Ortega JM, Serna-Gonzalez M, El-Halwagi MM, Comput. Chem. Eng., 44, 58, 2012
  26. Rubio-Castro E, Ponce-Ortega JM, Serna-Gonzalez M, Jimenez-Gutierrez A, El-Halwagi MM, Comput. Chem. Eng., 35(8), 1558, 2011
  27. Sharma S, Rangaiah GP, Ind. Eng. Chem. Res., 55(1), 226, 2016
  28. Reddy CCS, Rangaiah GP, Long WL, Naidu SV, Ind. Eng. Chem. Res., 52, 13059, 2013
  29. Gabriel KJ, El-Halwagi MM, Linke P, Ind. Eng. Chem. Res., 55(12), 3442, 2016
  30. Abass M, Majozi T, Ind. Eng. Chem. Res., 55(7), 1995, 2016
  31. Halim I, Srinivasan R, Comput. Chem. Eng., 35(8), 1575, 2011
  32. Zhou L, Liao ZW, Wang JD, Jiang BB, Yang YR, Yu HJ, Ind. Eng. Chem. Res., 54(13), 3355, 2015
  33. Zhou RJ, Li LJ, Ind. Eng. Chem. Res., 54(40), 9758, 2015
  34. Jagannath A, Almansoori A, Comput. Chem. Eng., 90, 44, 2016
  35. Jimenez-Gutierrez A, Lona-Ramirez J, Ponce-Ortega JM, El-Halwagi M, Comput. Chem. Eng., 71, 52, 2014
  36. Putra ZA, Amminudin KA, Ind. Eng. Chem. Res., 47(16), 6045, 2008
  37. Li BH, Chang CT, Ind. Eng. Chem. Res., 46(25), 8781, 2007
  38. Luo Y, Uan X, Chinese J. Chem. Eng., 16, 11, 2008
  39. Quirante N, Caballero JA, Comput. Chem. Eng., 92, 143, 2016
  40. Ramos MA, Boix M, Montastruc L, Domenech S, Ind. Eng. Chem. Res., 53(45), 17722, 2014
  41. Lazarova V, Choo KH, Cornel P, Water21, April, 12 (2012).
  42. Georges K, Thomton A, Sadler R, Transforming wastewater treatment to reduce carbon emissions, UK, Environmental Agency (2009).
  43. Keller J, Hartley K, Water Sci. Technol., 47, 43, 2003
  44. Shahabadi MB, Yerushalmi L, Haghighat F, Water Res., 43, 2679, 2009
  45. Gerdes K, Nichols C, US, Department of Energy (2009).
  46. Zhai H, Rublin ES, Versteeg PL, Environ. Sci. Technol., 45, 2479, 2011
  47. Stillwell AS, King CW, Webber ME, Duncan IJ, Hardberger A, Ecol. Soc., 16, 1, 2011
  48. Reffold E, Leighton F, Choudhury F, Rayner PS, UK, Environmental Agency (2008).
  49. Greenhouse gas protocol (http://www.ghgprotocol.org/calculationtools/faq).
  50. Wakelin DH, The making, shaping and treating of steel - Iron Making, 11th Ed., AISE Foundation, Pittsburgh (1999).
  51. Kothandaraman A, A Solvent Comparison Study, Doctoral Thesis, Massachusetts Institute of Technology (2010).