Issue
Korean Journal of Chemical Engineering,
Vol.34, No.10, 2610-2618, 2017
Reductive amination of ethanol to ethylamines over Ni/Al2O3 catalysts
Ni(x)/Al2O3 (x=wt%) catalysts with Ni loadings of 5-25 wt% were prepared via a wet impregnation method on an γ-Al2O3 support and subsequently applied in the reductive amination of ethanol to ethylamines. Among the various catalysts prepared, Ni(10)/Al2O3 exhibited the highest metal dispersion and the smallest Ni particle size, resulting in the highest catalytic performance. To reveal the effects of reaction parameters, a reductive amination process was performed by varying the reaction temperature (T), weight hourly space velocity (WHSV), and NH3 and H2 partial pressures in the reactions. In addition, on/off experiments for NH3 and H2 were also carried out. In the absence of NH3 in the reactant stream, the ethanol conversion and selectivities towards the different ethylamine products were significantly reduced, while the selectivity to ethylene was dominant due to the dehydration of ethanol. In contrast, in the absence of H2, the selectivity to acetonitrile significantly increased due to dehydrogenation of the imine intermediate. Although a small amount of catalyst deactivation was observed in the conversion of ethanol up to 10 h on stream due to the formation of nickel nitride, the Ni(10)/Al2O3 catalyst exhibited stable catalytic performance over 90 h under the optimized reaction conditions (i.e., T=190 °C, WHSV=0.9 h-1, and EtOH/NH3/H2 molar ratio=1/1/6).
[References]
  1. Sewell GS, Oconnor CT, Vansteen E, J. Catal., 167(2), 513, 1997
  2. Sewell G, Oconnor C, Vansteen E, Appl. Catal. A: Gen., 125(1), 99, 1995
  3. Hayes KS, Appl. Catal. A: Gen., 221(1-2), 187, 2001
  4. Reguillo R, Grellier M, Vautravers N, Vendier L, Sabo-Etienne S, J. Am. Chem. Soc., 132(23), 7854, 2010
  5. Das S, Zhou S, Addis D, Enthaler S, Junge K, Beller M, Top. Catal., 53, 979, 2010
  6. Tripathi RP, Verma SS, Pandey J, Tiwari VK, Curr. Org. Chem., 12, 1093, 2008
  7. Seayad K, Tillack A, Hartung CG, Beller M, Adv. Synth. Catal., 344, 795, 2002
  8. Bahn S, Imm S, Neubert L, Zhang M, Neumann H, Beller M, ChemCatChem, 3, 1853, 2011
  9. Cho JH, Park JH, Chang TS, Seo G, Shin CH, Appl. Catal. A: Gen., 417-418, 313, 2012
  10. Gomez S, Peters JA, Maschmeyer T, Adv. Synth. Catal., 344, 1037, 2002
  11. Zamlynny V, Kubelkova L, Baburek E, Jiratova K, Novakova J, Appl. Catal. A: Gen., 169, 119, 1998
  12. Zhang Y, Zhang Y, Feng C, Qiu C, Wen Y, Zhao J, Catal. Commun., 10, 1454, 2009
  13. Cho JH, Park JH, Chang TS, Kim JE, Shin CH, Catal. Lett., 143(12), 1319, 2013
  14. Chary KV, Seela KK, Naresh D, Ramakanth P, Catal. Commun., 9, 75, 2008
  15. Bodis J, Lefferts L, Muller TE, Pestman R, Lercher JA, Catal. Lett., 104(1-2), 23, 2005
  16. Ikenaga T, Matsushita K, Shinozawa J, Yada S, Takagi Y, Tetrahedron, 61, 2105, 2005
  17. Ousmane M, Perrussel G, Yan Z, Clacens JM, De Campo F, Pera-Titus M, J. Catal., 309, 439, 2014
  18. Domine ME, Hernandez-Soto MC, Navarro MT, Perez Y, Catal. Today, 172(1), 13, 2011
  19. Cho JH, An SH, Chang TS, Shin CH, Catal. Lett., 146(4), 811, 2016
  20. Baiker A, Caprez W, Holstein WL, Ind. Eng. Chem. Prod. Res. Dev., 22, 217, 1983
  21. Baiker A, Monti D, Fan YS, J. Catal., 88, 81, 1984
  22. Bae JW, Kim SM, Kang SH, Chary KVR, Lee YJ, Kim HJ, Jun KW, J. Mol. Catal. A-Chem., 311(1-2), 7, 2009
  23. Yang RC, Li XG, Wu JS, Zhang X, Zhang ZH, Cheng YF, Guo JT, Appl. Catal. A: Gen., 368(1-2), 105, 2009
  24. Yang RC, Wu JS, Li XG, Zhang X, Zhang ZH, Guo JT, Appl. Catal. A: Gen., 383(1-2), 112, 2010
  25. Zangouei M, Moghaddam AZ, Arasteh M, Chem. Eng. Res. BulL., 14, 97, 2010
  26. Li CP, Chen YW, Thermochim. Acta, 256(2), 457, 1995
  27. Milad IK, Smith KJ, Wong PC, Mitchell KAR, Catal. Lett., 52(1-2), 113, 1998
  28. Milosev I, Strehblow HH, Navinsek B, Thin Solid Films, 303(1-2), 246, 1997