Issue
Korean Journal of Chemical Engineering,
Vol.34, No.10, 2597-2609, 2017
A study on the direct catalytic steam gasification of coal for the bench-scale system
Various techniques have been developed to increase the efficiency of coal gasification. The use of a catalyst in the catalytic-steam gasification process lowers the activation energy required for the coal gasification reaction. Catalytic- steam gasification uses steam rather than oxygen as the oxidant and can lead to an increased H2/CO ratio. The purpose of this study was to evaluate the composition of syngas produced under various reaction conditions and the effects of these conditions on the catalyst performance in the gasification reaction. Simultaneous evaluation of the kinetic parameters was undertaken through a lab-scale experiment using Indonesian low rank coals and a bench-scale catalytic-steam gasifier design. The composition of the syngas and the reaction characteristics obtained in the lab- and bench-scale experiments employing the catalytic gasification reactor were compared. The optimal conditions for syngas production were empirically derived using lab-scale catalytic-steam gasification. Scale-up of a bench-scale catalyticsteam gasifier was based on the lab-scale results based on the similarities between the two systems. The results indicated that when the catalytic-steam gasification reaction was optimized by applying the K2CO3 catalyst to low rank coal, a higher hydrogen yield could be produced compared to the conventional gasification process, even at low temperature.
[References]
  1. Intergovernmental Panel on Climate Change, Climate Change 2014: Mitigation of Climate Change (Vol. 3), Cambridge University Press (2015).
  2. World Energy Resources: Coal World Energy Council (2013).
  3. Takarada T, Tamai Y, Tomita A, Fuel, 64(10), 1438, 1985
  4. Huhn F, Klein J, Juntgen H, Fuel, 62(2), 196, 1983
  5. Nahas NC, Fuel, 62(1), 239, 1983
  6. Wigmans T, Elfring R, Moulijn JA, Carbon, 21(1), 1, 1983
  7. McKee DW, Spiro CL, Kosky PG, Lamby EJ, Fuel, 62(2), 217, 1983
  8. Huttinger KJ, Minges R, Fuel, 64(4), 486, 1985
  9. Lang RJ, Fuel, 65(10), 1324, 1986
  10. Takarada T, Ichinose S, Kato K, Fuel, 71(8), 883, 1992
  11. Kubiak H, Schroter HJ, Sulimma A, van Heek KH, Fuel, 62(2), 242, 1983
  12. Kuhn L, Plogmann H, Fuel, 62(2), 205, 1983
  13. Juntgen H, Fuel, 62(2), 234, 1983
  14. Triantoro A, Diniyati D, J. Novel Carbon Resource Sciences, 7, 68, 2013
  15. Yuh SJ, Wolf EE, Fuel, 62(6), 738, 1983
  16. Bruno G, Buroni M, Carvani L, Del Piero G, Passoni G, Fuel, 67(1), 67, 1988
  17. Tomita A, Watanabe Y, Takarada T, Ohtsuka Y, Tamai Y, Fuel, 64(6), 795, 1985
  18. Bakkerud PK, Catal. Today, 106(1), 30, 2005
  19. Wen WY, Catal. Rev.-Sci. Eng., 22(1), 1, 1980
  20. Yuan XZ, Zhao L, Namkung H, Kang TJ, Kim HT, Fuel Process. Technol., 141, 44, 2016
  21. Euker CA, Reitz RA, Final Project Report for the U. S. Department of Energy under Contract No. ET-78-C-01-2777 (1981).
  22. Sheth AC, Sastry C, Yeboah YD, Xu Y, Agarwal P, J. Air Waste Manage. Assoc., 53(4), 451, 2003
  23. Yuan X, Performance evaluation of potassium catalyst recovery process in the K2CO3-catalyzed steam gasification system, Ajou University (2016).
  24. Lee S, Kim S, Korean Chem. Eng. Res., 46(3), 443, 2008
  25. Lee JM, Kim YJ, Lee WJ, Kim SD, HWAHAK KONGHAK, 35(1), 121, 1997
  26. McKee DW, Carbon, 20(1), 59, 1982
  27. Liu ZL, Zhu HH, Fuel, 65(10), 1334, 1986
  28. Karimi A, Gray MR, Fuel, 90(1), 120, 2011
  29. Suzuki T, Mishima M, Kitaguchi J, Itoh M, Watanabe Y, Fuel Process. Technol., 8(3), 205, 1984
  30. Spiro CL, Mckee DW, Kosky PG, Lamby EJ, Fuel, 62(2), 180, 1983
  31. Walker PJ, Shelef M, Anderson RA, Chem. Phys. Carbon; (United States), 4 (1968).
  32. Sams DA, Talverdian T, Shadman F, Fuel, 64(9), 1208, 1985
  33. Hippo EJ, Tandon D, Preprints of Papers-american Chemical Society Division Fuel Chemistry, 41, 216 (1996).
  34. Long FJ, Sykes KW, J. Chim. Phys., 47, 361, 1950
  35. McKee DW, Carbon, 12(4), 453, 1974
  36. Holstein WL, Boudart M, Fuel, 62(2), 162, 1983
  37. Kim YT, Seo DK, Hwang J, Korean Chem. Eng. Res., 49(3), 372, 2011
  38. Kang TJ, Namkung H, Xu LH, Park H, Hakizimana K, De Dieu J, Kim HT, Asia-Pacific J. Chem. Eng., 11(2), 237, 2016
  39. Kunii D, Levenspiel O, Fluidization Engineering, Elsevier (2013).
  40. Park JY, Lee DK, Hwang SC, Kim SK, Lee SH, Yoon SK, Yoo JH, Lee SH, Rhee YW, Clean Technol., 19(3), 306, 2013
  41. Lee JM, Kim YJ, Kim SD, Appl. Therm. Eng., 18(11), 1013, 1998
  42. Liu YR, Qian JL, Wang JQ, Fuel Process. Technol., 63(1), 45, 2000
  43. Hauserman WB, Int. J. Hydrog. Energy, 19(5), 413, 1994
  44. Timpe RC, Kulas RW, Hauserman WB, Sharma RK, Olson ES, Willson WG, Int. J. Hydrog. Energy, 22(5), 487, 1997
  45. McKee DW, Fuel, 62(2), 170, 1983
  46. Saber JM, Falconer JL, Brown LF, J. Catal., 90(1), 65, 1984
  47. Wood BJ, Sancier KM, Catal. Rev.-Sci. Eng., 26(2), 233, 1984
  48. Wang J, Sakanishi K, Saito I, Takarada T, Morishita K, Energy Fuels, 19(5), 2114, 2005
  49. Matsukata M, Fujikawa T, Kikuchi E, Morita Y, Energy Fuels, 2(6), 750, 1988
  50. Kopyscinski J, Rahman M, Gupta R, Mims CA, Hill JM, Fuel, 117, 1181, 2014
  51. Wang J, Jiang MQ, Yao YH, Zhang YM, Cao JQ, Fuel, 88(9), 1572, 2009
  52. Kural OK, (Ed.), Coal: resources, properties, utilization, pollution, Istanbul Technical University (1994).
  53. Tristantini D, Supramono D, Suwignjo RK, Int. J. Technol., 6, 22, 2015
  54. Kumar A, Jones DD, Hanna MA, Energy, 2(3), 556, 2009
  55. Lee WJ, Kim SD, Fuel, 74(9), 1387, 1995
  56. Lee WJ, Kim SD, Song BH, Korean J. Chem. Eng., 18(5), 640, 2001
  57. Vajpeyi M, Awasthi SK, Pandey GN, Energy, 11(6), 563, 1986
  58. Miura K, Hashimoto K, Silveston PL, Fuel, 68(11), 1461, 1989
  59. Kasaoka S, Sakata Y, Tong C, Int. Chem. Eng.; (United States), 25(1) (1985).
  60. Bustamante F, Enick RM, Cugini AV, Killmeyer RP, Howard BH, Rothenberger KS, Ciocco MV, Morreale BD, AIChE J., 50(5), 1028, 2004
  61. Lee DH, Yang HP, Yan R, Liang DT, Fuel, 86(3), 410, 2007
  62. Thunman H, Niklasson F, Johnsson F, Leckner B, Energy Fuels, 15(6), 1488, 2001
  63. Yan F, Luo SY, Hu ZQ, Xiao B, Cheng G, Bioresour. Technol., 101(14), 5633, 2010
  64. Ishida M, Wen CY, AIChE J., 14(2), 311, 1968
  65. Wen CY, Ind. Eng. Chem., 60(9), 34, 1968
  66. Song BH, Jang YW, Byeon YS, Korean Chem. Eng. Res., 41(3), 19, 2003
  67. Fox DA, White AH, Ind. Eng. Chem., 23(3), 259, 1931
  68. McKee DW, Chatterji D, Carbon, 13(5), 381, 1975
  69. Sams DA, Talverdian T, Shadman F, Fuel, 64(9), 1208, 1985
  70. Wigmans T, Haringa H, Moulijn JA, Fuel, 62(2), 185, 1983
  71. Wang J, Sakanishi K, Saito I, Takarada T, Morishita K, Energy Fuels, 19(5), 2114, 2005
  72. Wang J, Yao YH, Cao JQ, Jiang MQ, Fuel, 89(2), 310, 2010
  73. Freriks IL, van Wechem HM, Stuiver JC, Bouwman R, Fuel, 60(6), 463, 1981
  74. Liu QR, Hu HQ, Zhou Q, Zhu SW, Chen GH, Fuel, 83(6), 713, 2004
  75. Seo SJ, Lee SJ, Sohn JM, Clean Technol., 20(1), 72, 2014
  76. Sharma A, Takanohashi T, Saito I, Fuel, 87(12), 2686, 2008
  77. Lee C, Cho SM, Yoo YD, Yun Y, Korea Soc. Energy Eng., 143 (2005).