Issue
Korean Journal of Chemical Engineering,
Vol.34, No.9, 2536-2540, 2017
The effect of cetyltrimethylammonium bromide on the coefficient of thermal expansion and optical transmittance of poly(ether sulfone) film
Cetyltrimethylammonium bromide (CTAB) was used as a stabilizing agent for PES films, and its effect on the coefficient of thermal expansion (CTE) and optical transmittance (OT) of PES films was investigated. The CTE of PES film decreased with increasing CTAB concentration up to 0.5 wt%, because of the improved intermolecular interaction between polymer chains via CTAB molecules. When 0.5 wt% of CTAB was added to the PES film, the CTE of polymer film decreased from 66 to 50 ppm/°C without noticeable reduction in OT. At such a low CTAB concentration range (<0.5 wt%), the glass transition temperature (Tg) and tensile strength increased with CTAB. At high CTAB concentration above 0.5 wt%, however, it had a negative effect on the properties of PES film - CTE increased but Tg and ensile strength decreased with it.
[References]
  1. Tang CW, VanSlyke SA, Appl. Phys. Lett., 51, 913, 1987
  2. Findlay N, Breig B, Forbes C, Inigo A, Kanibolotsky A, Skabara P, J. Mater. Chem., 4, 3774, 2016
  3. Jou JH, Kumar S, Agrawal A, Li TH, Sahoo S, Chem. C, 3, 2974, 2015
  4. Kim J, Song M, Seol J, Hwang H, Park C, Korean J. Chem. Eng., 22(4), 643, 2005
  5. Lee DH, Choi J, Chae H, Chung CH, Cho SM, Korean J. Chem. Eng., 25(1), 176, 2008
  6. Guo Y, Wang H, Wang C, Zhang Y, US Patent, US 9,281,493 (2016).
  7. Salem A, Akkerman HB, van de Weijer P, Bouten PC, Shen J, de Winter SH, Kudlacek P, Panditha P, Fledderus H, van Glabbeek JJ, in Thin-film flexible barriers for PV applications and OLED lighting, pp. 1661-1663, IEEE (2016).
  8. Minakata T, Tanamura M, Mitamura Y, Imashiro M, Horiguchi A, Sugimoto A, Yamashita M, Yada Y, Ibaraki N, Tomiyasu H, in Challenges for ultra-thin and highly flexible OLEDs fabricated by roll to roll process, pp. 1-2, IEEE (2016).
  9. Wang Z, Helander M, Qiu J, Puzzo D, Greiner M, Hudson Z, Wang S, Liu Z, Lu Z, Nature Photonics, 5, 753, 2011
  10. May C, in Fabrication Technologies for Flexible OLED Lighting Modules, p. SSTh2B. 5, Optical Society of America (2016).
  11. Lewis J, Mater. Today, 9, 38, 2006
  12. MacDonald WA, J. Mater. Chem., 14, 4, 2004
  13. Lei PH, Hsu CM, Fan YS, Org. Electronics, 14, 236, 2013
  14. Suzuki N, Kiba S, Yamauchi Y, Phys. Chem. Chem. Phys., 13, 4957, 2011
  15. Wei C, Srivastava D, Cho K, Nano Lett., 2, 647, 2002
  16. Vo NT, Patra AK, Kim D, Phys. Chem. Chem. Phys., 19, 1937, 2017
  17. Cho EB, Kim D, Jaroniec M, J. Phys. Chem., 112, 4897, 2008
  18. Tang QY, Chan YC, Wong NB, Cheung R, Polymer International, 59, 1240, 2010
  19. Soares AR, Ponton PI, Mancic L, d'Almeida JRM, Romao CP, White MA, Marinkovic BA, J. Mater. Sci., 49(22), 7870, 2014
  20. Rahimpour A, Madaeni SS, Mansourpanah Y, J. Membr. Sci., 296(1-2), 110, 2007
  21. Cunningham TP, Cooper DL, Gerratt J, Karadakov PB, Raimondi M, J. Chem. Soc.-Faraday Trans., 93, 2247, 1997
  22. Muthumeenal A, Pethaiah SS, Nagendran A, Renew. Energy, 91, 75, 2016
  23. Wang H, Wu C, Wei Z, Li C, Liu Q, RSC Adv., 6, 4673, 2016
  24. Han J, Lee W, Choi JM, Patel R, Min BR, J. Membr. Sci., 351(1-2), 141, 2010
  25. Zhao CS, Yu BY, Qian BS, Wei Q, Yang KG, Zhang AM, J. Membr. Sci., 310(1-2), 38, 2008
  26. Le Roux JD, Van Schalkwyk OG, J. Appl. Polym. Sci., 71(1), 163, 1999
  27. Wang DM, Lin FC, Wu TT, Lai JY, J. Membr. Sci., 142(2), 191, 1998
  28. Tsai HA, Ruaan RC, Wang DM, Lai JY, J. Appl. Polym. Sci., 86(1), 166, 2002
  29. Saedi S, Madaeni SS, Shamsabadi AA, Mottaghi F, Sep. Purif. Technol., 99, 104, 2012