Issue
Korean Journal of Chemical Engineering,
Vol.34, No.9, 2502-2506, 2017
Effects of oxygen plasma generated in magnetron sputtering of ruthenium oxide on pentacene thin film transistors
Effects of oxygen plasma generated in a sputtering process for deposition of electrodes on pentacene thin films to configure top-contact (TC) transistors have been thoroughly investigated. Reactive oxygen species severely degraded electrical properties of pentacene films during the deposition of RuOx electrodes, leading to a failure of devices. In the off-region, the leakage current increased by about two orders of magnitude, and the subthreshold slope also increased by 6.5 times. The top surface of pentacene films was oxidized by oxygen plasma and C-O and C=O bonds awerere created. The pentacenequinone derivative was confirmed by X-ray photoelectron spectroscopy. The oxidation of pentacene films gives rise to charge traps at the pentacene/electrode interface, which produces a leakage channel between source and drain electrodes. We believe that this side effect of oxygen plasma on the fabrication of TC-devices should be considered carefully.
[References]
  1. Kamtekar KT, Monkman AP, Bryce MR, Adv. Mater., 22(5), 572, 2010
  2. Newman CR, Frisbie CD, da Silva Filho DA, Bredas JL, Ewbank PC, Mann KR, Chem. Mater., 146, 4436, 2004
  3. Fortunato E, Barquinha P, Martins R, Adv. Mater., 24(22), 2945, 2012
  4. Murphy AR, Frechet JMJ, Chem. Rev., 107(4), 1066, 2007
  5. Rhee SW, Yun DJ, J. Mater. Chem., 18, 5437, 2008
  6. Facchetti A, Yoon MH, Marks TJ, Adv. Mater., 17(14), 1705, 2005
  7. Dimitrakopoulos CD, Malenfant PRL, Adv. Mater., 14(2), 99, 2002
  8. Cosseddu P, Bonfiglio A, Thin Solid Films, 515(19), 7551, 2007
  9. Yun DJ, Lee S, Yong K, Rhee SW, Appl. Phys. Lett., 97, 073303, 2010
  10. Yun DJ, Rhee SW, J. Electrochem. Soc., 155(11), H899, 2008
  11. Chu CW, Li SH, Chem CW, Shrotriya V, Yang Y, Appl. Phys. Lett., 87, 193508, 2005
  12. Zhang XH, Domercq B, Wang X, Yoo S, Kondo T, Wang ZL, Kippelen B, Org. Electron., 8, 718, 2007
  13. Kim DH, Kim DW, Kim KS, Kim HJ, Moon JS, Hong MP, Kim BS, Shin JH, Kim YM, Song KK, Shin SS, Jpn. J. Appl. Phys., 47, 5672, 2008
  14. Rolland A, Richard J, Kleider JP, Mencaraglia D, J. Electrochem. Soc., 140(12), 3679, 1993
  15. McDowell M, Hill IG, Appl. Phys. Lett., 88, 073505, 2006
  16. Kim HK, Yu IH, Lee JH, Park TJ, Hwang CS, ACS Appl. Mater. Interfaces, 5, 1327, 2013
  17. Park S, Kim W, Kim Y, Korean J. Chem. Eng., 34(5), 1500, 2017
  18. So F, Kondakov D, Adv. Mater., 22(34), 3762, 2010
  19. Park M, Park JS, Han IK, Oh JY, J. Mater. Chem., 4, 11307, 2016
  20. Kang SJ, Yi Y, Kim CY, Yoo KH, Moewes A, Cho MH, Denlinger JD, Whang CN, Chang GS, Phys. Rev. B, 72, 205328, 2005
  21. Parisse P, Picozzi S, Ottaviano L, Org. Elec., 8, 498
  22. Zan HW, Chou CW, Jpn. J. Appl. Phys., 48, 031501, 2009
  23. Ono K, Totani H, Hiei T, Yoshino A, Saito K, Eguchi K, Tomura M, Nishida J, Yamashita Y, Tetrahedron, 63, 9699, 2007
  24. Matsumoto Y, Ohsawa T, Nakajima K, Koinuma H, Meas. Sci. Technol., 16, 199, 2005
  25. Vollmer A, Weiss H, Rentenberger S, Salzmann I, Rabe JP, Koch N, Surf. Sci., 600, 4004, 2006