Issue
Korean Journal of Chemical Engineering,
Vol.34, No.9, 2471-2479, 2017
Selective deposition of Au-Pt alloy nanoparticles on ellipsoidal zirconium titanium oxides for reduction of 4-nitrophenol
Au-Pt alloy nanoparticles that are selectively anchored on TiO2 surface of the ellipsoidal zirconium titanium composite oxides were successfully prepared by a facile two-step method: prefabricated binary composite oxides on the ellipsoidal Fe2O3@SiO2 by a versatile cooperative template-directed coating method, and then in situ formation of Au-Pt alloy NPs with Sn2+ as the reduction agent. The alloy catalysts were characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The result suggested that highly dispersive and ultrafine Au-Pt alloy nanoparticles were deposited onto TiO2 surface of the binary oxides solely. The particle size of nanoalloys was closely related to the ratio of Zr : Ti in the composite oxides shell. Increasing the content of Zr element led to a growth in the size of alloy nanoparticles. When used as catalysts for the reduction of 4-nitrophenol, the prepared supported alloyed catalysts exhibited high catalytic activity, and the sample could be easily recycled without a significant decrease of the catalytic activity.
[References]
  1. Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM, Acs Nano, 4, 3591, 2010
  2. Lin CR, Yeh CL, Lu SZ, Lyubutin IS, Wang SC, Suzdalev IP, Nanotechnology, 21, 235603, 2010
  3. Cargnello M, Grzelczak M, Rodriguez-Gonzalez B, Syrgiannis Z, Bakhmutsky K, La Parola V, Liz-Marzan LM, Gorte RJ, Prato M, Fornasiero P, J. Am. Chem. Soc., 134(28), 11760, 2012
  4. Zhuang H, Gu Q, Long J, Lin H, Lin H, Wang X, RSC Adv., 4, 34315, 2014
  5. Zhang Y, Zhou Y, Zhang Z, Xiang S, Sheng X, Zhou S, Wang F, Dalton Trans., 43, 1360, 2014
  6. Khan MM, Kalathil S, Lee J, Cho MH, Bull. Korean Chem. Soc., 33, 1753, 2012
  7. Delannoy L, Thrimurthulu G, Reddy PS, Methivier C, Nelayah J, Reddy BM, Ricolleau C, Louis C, Phys. Chem. Chem. Phys., 16, 26514, 2014
  8. Barias OA, Holmen A, Blekkan EA, J. Catal., 158(1), 1, 1996
  9. Zhang J, Chen G, Guay D, Chaker M, Ma D, Nanoscale, 6, 2125, 2014
  10. Corma A, Serna P, Science, 313, 332, 2006
  11. Zhao LY, Heinig N, Leung KT, Langmuir, 29(3), 927, 2013
  12. Liu N, Han H, Yuan Z, Ma Z, RSC Adv., 5, 1867, 2015
  13. Luo J, Njoki PN, Lin Y, Wang LY, Zhong CJ, Electrochem. Commun., 8, 581, 2006
  14. Zhao L, Thomas JP, Heinig NF, Abd-Ellah M, Wang X, Leung KT, J. Mater. Chem., 2, 2707, 2014
  15. Zhang J, Hou C, Huang H, Zhang L, Jiang Z, Chen G, Jia Y, Kuang Q, Xie Z, Zheng L, Small, 9, 538, 2013
  16. Ferrando R, Jellinek J, Johnston RL, Chem. Rev., 108(3), 845, 2008
  17. Zhao L, Zhang CY, Zhuo L, Zhang YG, Ying JY, J. Am. Chem. Soc., 130(38), 12586, 2008
  18. Chen B, Lutker K, Raju SV, Yan JY, Kanitpanyacharoen W, Lei JL, Yang SZ, Wenk HR, Mao HK, Williams Q, Science, 338(6113), 1448, 2012
  19. Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T, J. Phys. Chem., 111, 4596, 2007
  20. Chen X, Cai Z, Chen X, Oyama M, J. Mater. Chem., 2, 5668, 2014
  21. Sivakumar C, Phani KL, Chem. Commun., 47, 3535, 2011
  22. Crespilho FN, Borges TFCC, Zucolotto V, Leite ER, Nart FC, Oliveira ON, J. Nanosci. Nanotechnol., 6, 2588, 2006
  23. Zhang Q, Lima DQ, Lee I, Zaera F, Chi MF, Yin Y, Angew. Chem.-Int. Edit., 50, 7088, 2011
  24. Jung J, Kang S, Han YK, Nanoscale, 4, 4206, 2012
  25. Zheng J, Dong Y, Wang W, Ma Y, Hu J, Chen X, Chen X, Nanoscale, 5, 4894, 2013
  26. Chen C, Nan C, Wang D, Su Q, Duan H, Liu X, Zhang L, Chu D, Song W, Peng Q, Li Y, Angew. Chem.-Int. Edit., 50, 3725, 2011
  27. Valden M, Pak S, Lai X, Goodman DW, Catal. Lett., 56(1), 7, 1998
  28. Qi J, Chen J, Li G, Li S, Gao Y, Tang Z, Energy Environ. Sci., 5, 8937, 2012
  29. Deng W, Carpenter C, Yi N, Flytzani-Stephanopoulos M, Top. Catal., 44, 199, 2007
  30. Chen X, Mao SS, Chem. Rev., 107, 2897, 2007
  31. Reddy BM, Khan A, Catal. Rev.-Sci. Eng., 47(2), 257, 2005
  32. Zou H, Lin YS, Appl. Catal. A: Gen., 265(1), 35, 2004
  33. Manriquez ME, Picquart M, Bokhimi X, Lopez T, Quintana P, Coronado JM, J. Nanosci. Nanotechnol., 8, 6623, 2008
  34. Liu J, Zou S, Li S, Liao X, Hong Y, Xiao L, Fan J, J. Mater. Chem., 1, 4038, 2013
  35. Kimling MC, Chen D, Caruso RA, J. Mater. Chem., 3, 3768, 2015
  36. Zhang Z, Zhou Y, Zhang Y, Zhou S, Xiang S, Sheng X, Jiang P, J. Mater. Chem., 3, 4642, 2015
  37. Ozaki M, Kratohvil S, Matijevic E, J. Colloid Interface Sci., 102, 146, 1984
  38. Yun G, Hassan Z, Lee J, Kim J, Lee NS, Kim NH, Baek K, Hwang I, Park CG, Kim K, Angew. Chem.-Int. Edit., 53, 6414, 2014
  39. Au L, Lu XM, Xia YN, Adv. Mater., 20(13), 2517, 2008
  40. Dementjev AP, de Graaf A, van de Sanden MCM, Maslakov KI, Naumkin AV, Serov AA, Diam. Relat. Mat., 9, 1904, 2000
  41. He YB, Li GR, Wang ZL, Ou YN, Tong YX, J. Phys. Chem., 114, 191751, 2010
  42. Mi Y, Wang J, Yang Z, Wang H, Wang Z, Yang S, RSC Adv., 4, 39743, 2014
  43. Dong ZP, Le XD, Dong CX, Zhang W, Li XL, Ma JT, Appl. Catal. B: Environ., 162, 372, 2015
  44. Cui XL, Zuo W, Tian M, Dong ZP, Ma JT, J. Mol. Catal. A-Chem., 423, 386, 2016
  45. Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y, Nanoscale, 3, 3357, 2011
  46. Pozun ZD, Rodenbusch SE, Keller E, Tran K, Tang WJ, Stevenson KJ, Henkelman G, J. Phys. Chem., 117, 7598, 2013
  47. Fan CM, Zhang LF, Wang SS, Wang DH, Lu LQ, Xu AW, Nanoscale, 4, 6835, 2012
  48. Ye WC, Yu J, Zhou YX, Gao DQ, Wang DA, Wang CM, Xue DS, Appl. Catal. B: Environ., 181, 371, 2016
  49. Tian M, Cui XL, Dong CX, Dong ZP, Appl. Surf. Sci., 390, 100, 2016
  50. Tang S, Vongehr S, Meng X, J. Mater. Chem., 20, 5436, 2010
  51. Zhang J, Chen G, Guay D, Chaker M, Ma D, Nanoscale, 6, 2125, 2014
  52. Zhang Z, Zhou Y, Zhang Y, Sheng X, Zhou S, Xiang S, RSC Adv., 4, 40078, 2014