Issue
Korean Journal of Chemical Engineering,
Vol.34, No.9, 2418-2422, 2017
Removal of polycyclic aromatic hydrocarbons from contaminated soil in a two-phase partitioning bioreactor
A two-phase partitioning bioreactor was employed to remediate soil contaminated by a mixture of polycyclic aromatic hydrocarbons consisting of phenanthrene, anthracene, and pyrene. In this study, the transfer of three PAHs into the water-immiscible liquid phase (silicone oil or paraffine oil) from the soil was investigated during the first 24 h. And then, phenanthrene and anthracene were degraded by approximately 90% and 80%, respectively, compared with initial concentration in soil, but pyrene was not degraded during seven days of operation period. In addition, the feasibility of a soil slurry sequencing batch reactor system in terms of continuously operating a two-phase partitioning bioreactor was investigated. Phenanthrene and anthracene were degraded semi-continuously and repeatedly during two operating cycles. Pyrene was still not degraded and was just transferred into the water-immiscible liquid phase considering its solubility.
[References]
  1. Gan S, Lau EV, Ng HK, J. Hazard. Mater., 172(2-3), 532, 2009
  2. Nasirpoour N, Mousavi SM, Shojaosadati SA, Korean J. Chem. Eng., 32(5), 847, 2015
  3. Waigi MG, Kang F, Goikavi C, Ling W, Gao Y, Int. Biodeterior. Biodegrad., 104, 333, 2015
  4. Yoo JC, Lee C, Lee JS, Baek K, J. Environ. Manage., 186, 314, 2017
  5. Roh C, Kang CK, Lloyd JR, Korean J. Chem. Eng., 32(9), 1720, 2015
  6. Gonzalez N, Simarro R, Molina MC, Bautista LF, Delgado L, Villa JA, Bioresour. Technol., 102(20), 9438, 2011
  7. Zhang D, Zhu LZ, Li F, Bioresour. Technol., 142, 454, 2013
  8. Ni H, Zhou W, Zhu L, J. Environ. Sci., 26, 1071, 2014
  9. Daugulis AJ, Trends Biotechnol., 19(11), 457, 2011
  10. Deziel E, Comeau Y, Villemur R, Biodegradation, 10, 219, 1999
  11. Villemur R, Deziel E, Benachenhou A, Marcoux J, Gauthier E, Lepine F, Beaudet R, Comeau Y, Biotechnol. Prog., 16(6), 966, 2000
  12. Guieysse B, Cirne MDTG, Mattiasson B, Appl. Microbiol. Biotechnol., 56(5-6), 796, 2001
  13. Efroymson RA, Alexander M, Environ. Sci. Technol., 28, 1172, 1994
  14. Janikowski TB, Velicogna D, Punt M, Daugulis AJ, Appl. Microbiol. Biotechnol., 59(2-3), 368, 2002
  15. Munoz R, Guieysse B, Mattiasson B, Appl. Microbiol. Biotechnol., 61(3), 261, 2003
  16. Lu M, Zhang Z, Sun S, Wang Q, Zhong W, Chemosphere, 77, 161, 2009
  17. Wang CY, Wang F, Wang T, Bian YR, Yang XL, Jiang X, J. Hazard. Mater., 176(1-3), 41, 2010
  18. Arca-Ramos A, Eibes G, Moreira MT, Feijoo G, Lema JM, Chem. Eng. J., 240, 281, 2014
  19. Lee JY, Kwon TS, J. Ind. Eng. Chem., 47, 46, 2017
  20. Munoz R, Villaverde S, Guieysse B, Revah S, Biotechnol. Adv., 25, 410, 2007
  21. Munoz R, Daugulis AJ, Hernandez M, Quijano G, Biotechnol. Adv., 20, 1707, 2012
  22. Poleo EE, Dauglis AJ, J. Hazard. Mater., 254-255, 206, 2013
  23. Cassidy DP, Efendiev S, White DM, Water Res., 34(18), 4333, 2000
  24. Cassidy DP, Hudak AJ, J. Hazard. Mater., B84, 253, 2001
  25. Chiavola A, Baciocchi R, Gavasci R, J. Hazard. Mater., 184(1-3), 97, 2010
  26. Ahn Y, Jung BG, Sung NC, Lee YO, J. Life Sci., 19(5), 659, 2009
  27. Lee JY, Cho HJ, Baek K, Yang JW, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 40, 509, 2005
  28. Yang JW, Lee YJ, Park JY, Kim SJ, Lee JY, Eng. Geol., 77, 243, 2005
  29. Park JY, Lee HH, Kim SJ, Lee YJ, Yang JW, J. Hazard. Mater., 140(1-2), 230, 2007