Issue
Korean Journal of Chemical Engineering,
Vol.34, No.9, 2374-2382, 2017
Enhanced CO methanation over Ni-based catalyst using a support with 3D-mesopores
Ni-based catalysts supported on a support with 3D-mesopores, including Ni/KIT-6(EG), Ni/KIT-6(PS) and Ni/KIT-6(DS), were prepared by adding ethylene glycol, direct synthesis and post synthesis methods, respectively, and their catalytic properties were investigated for CO methanation as one of the core technologies of synthetic natural gas production in a continuous flow fixed-bed reactor. The catalysts were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), transmission electron microscope (TEM), energy-dispersive X-ray spectroscopy (EDS), hydrogen temperature-programmed reduction (H2-TPR), hydrogen temperature-programmed desorption (H2-TPD) and thermal gravimetric analysis (TGA), respectively. The results showed that Ni/KIT-6(EG) exhibited the best catalytic performance with CO conversion of almost 100% and CH4 yield of 75% at 450 °C, atmospheric pressure and 60,000 mL/g/h due to the higher dispersion of Ni species, stronger reducibility of NiO and formation of smaller Ni nanoparticles fixed into 3D-mesopores, indicating that adding ethylene glycol was effective to improve catalytic performance of Ni-based catalyst for CO methanation. Moreover, compared with Ni/Al2O3(EG) prepared using Al2O3 as a support, Ni/KIT- 6(EG) showed better catalytic performance owing to the higher specific surface area, stronger reducibility of NiO and confinement effect of 3D-mesopores promoting to produce more active sites. After 60h lifetime test of Ni/KIT-6(EG) at 500 °C, atmospheric pressure and 60,000mL/g/h, 3D-mesopores were still maintained and no obvious agglomeration of Ni nanoparticles was observed, meaning that Ni species were still well dispersed into 3D-mesopores. As a consequence, Ni/KIT-6(EG) exhibited superior catalytic performance and stability, which makes it a promising candidate for CO methanation.
[References]
  1. Gotz M, Lefebvre J, Mors F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T, Renew. Energy, 85, 1371, 2016
  2. Gao J, Liu Q, Gu F, Liu B, Zhong Z, Su F, RSC Adv., 5, 22759, 2015
  3. Barrientos J, Lualdi M, Paris RS, Montes V, Boutonnet M, Jaras S, Appl. Catal. A: Gen., 502, 276, 2015
  4. Goula MA, Charisiou ND, Papageridis KN, Delimitis A, Pachatouridou E, Iliopoulou EF, Int. J. Hydrog. Energy, 40(30), 9183, 2015
  5. Galletti C, Specchia S, Specchia V, Chem. Eng. J., 167(2-3), 616, 2011
  6. Kustov AL, Frey AM, Larsen KE, Johannessen T, Norskov JK, Christensen CH, Appl. Catal. A: Gen., 320, 98, 2007
  7. Yao ZW, Zhang XH, Peng F, Yu H, Wang HJ, Yang JA, Int. J. Hydrog. Energy, 36(3), 1955, 2011
  8. Liu Q, Gu FN, Lu XP, Liu YJ, Li HF, Zhong ZY, Xu GW, Su FB, Appl. Catal. A: Gen., 488, 37, 2014
  9. Sehested J, Dahl S, Jacobsen J, Rostrup-Nielsen JR, J. Phys. Chem. B, 109(6), 2432, 2005
  10. Mok YS, Kang HC, Lee HJ, Koh DJ, Shin DN, Plasma Chem. Plasma Process., 30(4), 437, 2010
  11. Liu Q, Gu F, Gao J, Li H, Xu G, Su F, J. Energy Chem., 23, 761, 2014
  12. Zyryanova MM, Snytnikov PV, Gulyaev RV, Amosov YI, Boronin AI, Sobyanin VA, Chem. Eng. J., 238, 189, 2014
  13. Shinde VM, Madras G, AIChE J., 60(3), 1027, 2014
  14. Li XQ, Tong DM, Hu CW, J. Energy Chem., 24, 463, 2015
  15. Ma SL, Tan YS, Han YZ, J. Nat. Gas Chem., 20, 435, 2011
  16. Struis RPWJ, Schildhauer TJ, Czekaj I, Janousch M, Biollaz SMA, Ludwig C, Appl. Catal. A: Gen., 362(1-2), 121, 2009
  17. Li HD, Ren J, Qin X, Qin ZF, Lin JY, Li Z, RSC Adv., 5, 96504, 2015
  18. Liu Q, Gu F, Zhong Z, Xu G, Su F, Korean J. Chem. Eng., 33(5), 1599, 2016
  19. Tao M, Meng X, Lv YH, Bian ZC, Xin Z, Fuel, 165, 289, 2016
  20. Bian ZC, Meng X, Tao M, Lv YH, Xin Z, Fuel, 179, 193, 2016
  21. Zhang JY, Xin Z, Meng X, Tao M, Fuel, 109, 693, 2013
  22. Xie T, Shi LY, Zhang JP, Zhang DS, Chem. Commun., 50, 7250, 2014
  23. Kleitz F, Berube F, Guillet-Nicolas R, Yang C, Thommes M, J. Phys. Chem., 114, 9344, 2010
  24. Subramaniyan K, Arumugam P, J. Porous Mat., 23, 639, 2016
  25. He F, Luo JQ, Liu ST, Chem. Eng. J., 294, 362, 2016
  26. Lv XY, Chen JF, Tan YS, Zhang Y, Catal. Commun., 20, 6, 2012
  27. Lu BW, Kawamoto K, RSC Adv., 2, 6800, 2012
  28. Lu BW, Kawamoto K, Fuel, 103, 699, 2013
  29. Kleitz F, Choi SH, Ryoo R, Chem. Commun., 17, 2136, 2003
  30. Liu Q, Gao J, Zhang MJ, Li HF, Gu FN, Xu GW, Zhong ZY, Su FB, RSC Adv., 4, 16094, 2014
  31. Jin G, Gu F, Liu Q, Wang X, Jia L, Xu G, Zhong ZY, Su FB, RSC Adv., 6, 9631, 2016
  32. Sanchez-Cantu M, Perez-Diaz LM, Maubert AM, Valente JS, Catal. Today, 150(3-4), 332, 2010
  33. Guo CL, Wu YY, Qin HY, Zhang JL, Fuel Process. Technol., 124, 61, 2014