Issue
Korean Journal of Chemical Engineering,
Vol.34, No.8, 2218-2224, 2017
Comparison of electrodialysis and reverse electrodialysis processes in the removal of Cu(II) from dilute solutions
Electrodialysis (ED) and electrodialysis reversal (EDR) processes have been often used for separation of ions in dilute solutions. In this study, the performance of ED and EDR processes has been examined in the removal of copper from the dilute solutions. First, applied voltage, initial concentration, flow rate, type of electrolyte and the effect of concentration were determined for both processes. Then, separation efficiency, current efficiency, energy requirement and material flux of the processes were calculated, and the performances of the processes were compared. The separation efficiency and energy consumption of EDR process were higher compared to ED process under equal operating conditions. Also, the current efficiency (39.58%) of EDR process was lower than the current efficiency (67.46%) of ED process. It can be said that the ED process is more suitable in terms of energy consumption for separation in the low flow rate and concentration.
[References]
  1. He DS, Ma M, Zhao ZH, J. Membr. Sci., 169(1), 53, 2000
  2. Arar O, Yuksel U, Kabay N, Yuksel M, Desalination, 277(1-3), 296, 2011
  3. Strathmann H, Sep. Purif. Methods, 14, 41, 1985
  4. Spoor PB, Grabovska L, Koene L, Janssen LJJ, ter Veen WR, Chem. Eng. J., 89(1-3), 193, 2002
  5. Rao KS, Mohapatra M, Anand S, Venkateswarlu P, Int. J. Eng. Sci. Technol., 2(7), 81, 2010
  6. Andres LJ, Riera FA, Alvarez R, Audinos R, Can. J. Chem. Eng., 72(5), 848, 1994
  7. Alonso M, Lopez-Delgado A, Sastre AM, Alguacil FJ, Chem. Eng. J., 118(3), 213, 2006
  8. Mortaheb HR, Kosuge H, Mokhtarani B, Amini MH, Banihashemi HR, J. Hazard. Mater., 165(1-3), 630, 2009
  9. Parhi PK, Das NN, Sarangi K, J. Hazard. Mater., 172(2-3), 773, 2009
  10. Marchese J, Campderros M, Desalination, 164(2), 141, 2004
  11. Thampy SK, Narayanan PK, Chauhan DK, Trivedi JJ, Indusekhar VK, Ramasamy T, Prasad BG, Rao JR, Sep. Sci. Technol., 30(19), 3715, 1995
  12. Fontas C, Pont N, Hidalgo M, Salvado V, Desalination, 200(1-3), 114, 2006
  13. Lee HJ, Song JH, Moon SH, Desalination, 314, 43, 2013
  14. Smara A, Delimi R, Chainet E, Sandeaux J, Sep. Purif. Technol., 57(1), 103, 2007
  15. Tchobanoglous G, Burton FL, Stensel DH, Wastewater Engineering Treatment and Reuse, Fourth Edition, Metcalf & Eddy Inc. (Editor), McGraw-Hill Companies, Inc., New York (2003).
  16. Jack SW, Separation Methods Environmental Applications, Marcel Dekker, New York (1999).
  17. Valero F, Arbos R, Desalination, 253(1-3), 170, 2010
  18. Marder L, Sulzbach GO, Bernardes AM, Ferreira J, J. Braz. Chem. Soc., 14, 610, 2003
  19. Butter TJ, Evison LM, Hancock IC, Holland FS, Matis KA, Water Res., 32(2), 400, 1998
  20. Oren Y, Egozy Y, Desalination, 86, 155, 1992
  21. Dalla Costa RF, Rodrigues MAS, Ferreira JZ, Sep. Sci. Technol., 33(8), 1135, 1998
  22. Nowier HG, El-Said N, Aly HF, J. Membr. Sci., 177(1-2), 41, 2000
  23. Ali MBS, Hafiane A, Dhahbi M, Hamrouni B, J. Memb. Separ. Technol., 3, 67, 2014
  24. Gherasim CV, Krivcik J, Mikulasek P, Chem. Eng. J., 256, 324, 2014
  25. Abou-Shady A, Peng CS, Almeria J, Xu HZ, Desalination, 285, 46, 2012
  26. Kabay N, Kahveci H, Ipek O, Yuksel M, Desalination, 198(1-3), 74, 2006
  27. Choi KH, Jeoung TY, Korean J. Chem. Eng., 19(1), 107, 2002
  28. Lee G, Desalin. Water Treat., 35, 150, 2011
  29. CRC Handbook of Chemistry, and Physics, 70th Ed., CRC Press, Boca Raton, FL (1989).
  30. Valero F, Barcelo A, Arbos R, Schorr M Eds., InTech Inc. India (2011).