Issue
Korean Journal of Chemical Engineering,
Vol.34, No.8, 2188-2197, 2017
Prediction and optimization of hydrogen yield and energy conversion efficiency in a non-catalytic filtration combustion reactor for jet A and butanol fuels
Hydrogen production is one of main subjects in fuel cells. The traditional method of synthesis gas production is based on fuel reforming using catalysts. The main problem of these methods is sensitivity and fast degradation of catalysts especially when fuels with high sulfur content are used. A new technique for hydrogen production is fuelreforming using non-catalytic filtration combustion in porous media reactors. Various experimental works have been carried out to increase hydrogen production under different operating conditions such as inlet fuel velocity and equivalence ratio. First, we investigated the ability of adaptive neuro fuzzy inference system (ANFIS) for predicting the filtration combustion characteristics. Four distinct ANFIS models were developed for estimating the hydrogen yield and energy conversion efficiency for fuels of jet A and butanol. Eight different membership functions of dsigmf, gauss2mf, gaussmf, gbellmf, pimf, psigmf, trapmf and trimf were tested for training of the ANFIS networks. The results showed that the RMSE of the best developed ANFIS models for estimating of the hydrogen yield of jet fuel, hydrogen yield of butanol, conversion efficiency of jet fuel and conversion efficiency of butanol were 1.399, 1.213, 0.508 and 2.191, respectively. Moreover the R2 values of 0.998, 0.998, 0.999 and 0.999 were obtained for predicting the above mentioned variables, respectively. In the second step, a novel algorithm based on imperialist competitive algorithm (ICA) was used for optimization of hydrogen yield and energy efficiency. The maximum value of hydrogen yield and energy efficiency was 50.46% and 67.88% for jet A and 47.27% and 96.93% for butanol, respectively. The results showed that the imperialist competitive algorithm is an efficient and powerful algorithm to optimize combustion processes.
[References]
  1. Pedersen-Mjaanes H, Chan L, Mastorakos E, Int. J. Hydrog. Energy, 30(6), 579, 2005
  2. Smith CH, Leahey DM, Miller LE, Ellzey JL, Proceedings of the Combustion Institute, 33(2), 3317, 2011
  3. Smith CH, Pineda DI, Zak CD, Ellzey JL, Int. J. Hydrog. Energy, 38(2), 879, 2013
  4. Dhamrat RS, Ellzey JL, Combust. Flame, 144(4), 698, 2006
  5. Dixon MJ, Schoegl I, Hull CB, Ellzey JL, Combust. Flame, 154(1-2), 217, 2008
  6. Shabanian SR, Rahimi M, Amiri A, Sharifnia S, Alsairafi AA, Korean J. Chem. Eng., 29(11), 1531, 2012
  7. BHARADWAJ SS, SCHMIDT LD, Fuel Process. Technol., 42(2-3), 109, 1995
  8. Moon DJ, Ryu JW, Lee SD, Lee BG, Ahn BS, Appl. Catal. A: Gen., 272(1-2), 53, 2004
  9. Velu S, Ma XL, Song CS, Namazian M, Sethuraman S, Venkataraman G, Energy Fuels, 19(3), 1116, 2005
  10. Lakhapatri SL, Abraham MA, Appl. Catal. A: Gen., 405(1-2), 149, 2011
  11. Araya R, Araus K, Utria K, Toledo M, Int. J. Hydrog. Energy, DOI:10.1016/j.ijhydene.2014.02.113., 39(14), 7338, 2014
  12. Smith CH, Zak CD, Pineda D, Ellzey JL, Georgia Institute of Technology, Atlanta, GA (2011).
  13. Kakutkina NA, Bunev VA, Explosion, and Shock Waves, 37(4), 395, 2001
  14. Toledo M, Gracia F, Caro S, Gomez J, Jovicic V, Int. J. Hydrog. Energy, 41(14), 5857, 2016
  15. Pastore A, Mastorakos E, Exp. Therm. Fluid Sci., 34, 359, 2010
  16. Pastore A, Mastorakos E, Fuel, 90(1), 64, 2011
  17. Shabanian SR, Rahimi M, Khoshhal A, Alsairafi AA, Iranian J. Chem. Chem. Eng. (IJCCE), 29(4), 161, 2010
  18. Beigzadeh R, Rahimi M, Shabanian SR, Fluid Phase Equilib., 331, 48, 2012
  19. Guoneng L, Hao Z, Xinping Q, Kefa C, Chinese J. Chem. Eng., 16(2), 292, 2008
  20. Glarborg P, Miller JA, Kee RJ, Combust. Flame, 65(2), 177, 1986
  21. Riazi SH, Heydari H, Ahmadpour E, Gholami A, Parvizi S, J. Natural Gas Sci. Eng., 18, 377, 2014
  22. Ahmadi MA, Ebadi M, Shokrollahi A, Majidi SMJ, Appl. Soft Computing, 13(2), 1085, 2013
  23. Ahmadi MA, J. Petroleum Exploration and Production Technol, 1(2), 99, 2011
  24. Berneti SM, Shahbazian M, Int. J. Comput. Applications, 26(10), 47, 2011
  25. Zendehboudi S, Ahmadi MA, Mohammadzadeh O, Bahadori A, Chatzis I, Ind. Eng. Chem. Res., 52(17), 6009, 2013
  26. Abolhasani M, Karami A, Rahimi M, Numer. Heat Transf. A-Appl., 67, 1282, 2015
  27. Fitriyani N, Nahdliyah SDN, Biyanto TR, 6th International Annual Engineering Seminar (InAES), Yogyakarta, Indonesia (2016).
  28. Dossary MAA, Nasrabadi H, J. Petroleum Sci. Eng., 147, 237, 2016
  29. Rajabioun R, Atashpaz-Gargarif E, Lucas C, ICCSA. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 5073, 680 (2008).
  30. Rad HS, Lucas C, In 13th international CSI computer conference (CSICC’08), Kish Island, Iran (2008).
  31. Maroufmashat A, Sayedin F, Khavas SS, Int. J. Hydrog. Energy, 39(33), 18743, 2014
  32. Justesen KK, Andreasen SJ, Shaker HR, Ehmsen MP, Andersen J, Int. J. Hydrog. Energy, 38(25), 10577, 2013
  33. Justesen KK, Andreasen SJ, Int. J. Hydrog. Energy, 40(30), 9505, 2015
  34. Yaici W, Entchev E, Renew. Energy, 86, 302, 2016
  35. Mishra VK, Mishra SC, Basu DN, Numer. Heat Transf. A-Appl., 67, 1119, 2015
  36. Bubnovich V, Henriquez L, Gnesdilov N, Numer. Heat Transf. A-Appl., 52, 275, 2007
  37. Bidabadi M, Fereidooni J, Tavakoli R, Mafi M, Korean J. Chem. Eng., 28(2), 461, 2011
  38. Shabanian SR, Abdoos AA, 2017 (in press), DOI:10.1007/s00521-017-2956-1.
  39. Smith CH, Zak CD, Ellzey JL, 2010 Spring Technical Meeting of the Western States Section of the Combustion Institute hosted by University of Colorado at Boulder, Boulder, CO (2010).
  40. Atashpaz-Gargari E, Lucas C, IEEE Congress on Evolutionary Computation, 4661, Singapore (2007).
  41. Jang JSR, Sun CT, Mizutani E, Prentice-Hall (1996).
  42. Jang JSR, Sun CT, IEEE Trans. Neural Networks, 4(1), 156, 1993
  43. Jang JSR, IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665, 1993
  44. Beigzadeh R, Hajialyani M, Rahimi M, Korean J. Chem. Eng., 33(5), 1534, 2016
  45. Shabanian SR, lashgari S, Hatami T, Numer. Heat Transf. A-Appl., 70(1), 30, 2016
  46. Sivanandam SN, Deepa SN, Introduction to Genetic Algorithms, Springer Science and Business Media, New York (2007).
  47. Yuen CC, Aatmeeyata, Gupta SK, Ray AK, J. Membr. Sci., 176(2), 177, 2000