Issue
Korean Journal of Chemical Engineering,
Vol.34, No.8, 2162-2168, 2017
Facile synthesis of tungsten carbide-carbon composites for oxygen reduction reaction
Tungsten carbide-carbon composite (XWC-C, where X=10 or 30 represents the tungsten content) supports were prepared by pyrolyzing tungsten-adsorbed poly(4-vinylpyridine)-functionalized carbon. The supports were used to prepare Pt catalysts (Pt/XWC-C) for oxygen reduction reactions (ORR) in alkaline solution. Prepared XWC-C revealed highly dispersed tungsten carbide species composed of WC and W2C phases. The tungsten carbide species proved to have a positive effect on the dispersion of Pt particles. Compared to the Pt catalyst supported on carbon (Pt/ C), Pt/XWC-C showed higher ORR performance. In addition, the catalytic performance of Pt/XWC-C was enhanced with increasing tungsten carbide content. The highest ORR activity was achieved for the Pt/30WC-C catalyst, which had a 2.9-fold enhanced performance (at 0.8V vs. RHE) compared to that of Pt/C. It is believed that the unique interaction between Pt and the tungsten carbide species was responsible for the enhanced ORR performance of the Pt/ XWC-C catalysts.
[References]
  1. Levy RL, Boudart M, Science, 181, 547, 1973
  2. Ribeiro FH, Dalla Betta RA, Guskey GJ, Budart M, Chem. Mater., 3, 805, 1991
  3. Chen JG, Chem. Rev., 96(4), 1477, 1996
  4. Green MLH, Xiao T, York APE, Williams VC, Chem. Mater., 12, 3869, 2000
  5. Venkataraman R, Kunz HR, Fenton JM, J. Electrochem. Soc., 150, A287, 2003
  6. Nguyen TH, Adesina AA, Yue EMT, Lee YJ, Khodakov A, Brungs MP, J. Chem. Technol. Biotechnol., 79(3), 286, 2004
  7. Oxley JD, Mdleleni MM, Suslick KS, Catal. Today, 88(3-4), 139, 2004
  8. Yang XG, Wang CY, Appl. Phys. Lett., 86, 224104, 2005
  9. Ko AR, Lee YW, Moon JS, Han SB, Cao GZ, Park KW, Appl. Catal. A: Gen., 477, 102, 2014
  10. Nersisyan HH, Won HI, Won CW, Mater. Lett., 59, 3950, 2005
  11. Zheng H, Huang J, Wang W, Ma C, Electrochem. Commun., 7, 1045, 2005
  12. Shaobo M, Yezhi Y, longbiao W, Jun W, Qinggan H, J. Chem. Phys., 13, 487, 2000
  13. Tianyi C, Bohong Z, Wenbo C, Yao L, Electrochemistry, 3, 343, 2002
  14. Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG, Angew. Chem.-Int. Edit., 120, 8638, 2008
  15. Adriana NC, Sergio ASM, Luis AA, Electrochem. Commun., 1, 600, 1999
  16. Wang Y, Song SQ, Maragou V, Shen PK, Tsiakaras P, Appl. Catal. B: Environ., 89(1-2), 223, 2009
  17. Chhina H, Campbell S, Kesler O, J. Power Sources, 179(1), 50, 2008
  18. Joo JB, Kim JS, Kim P, Yi J, Mater. Lett., 62, 3497, 2008
  19. Ma C, Sheng J, Brandon N, Zhang C, Li G, Int. J. Hydrog. Energy, 32(14), 2824, 2007
  20. Liu Y, Mustain WE, ACS Catal., 1, 212, 2011
  21. Chhina H, Campbell S, Kesler O, J. Power Sources, 164(2), 431, 2007
  22. Cui GF, Shen PK, Meng H, Zhao J, Wu G, J. Power Sources, 196(15), 6125, 2011
  23. Mellinger ZJ, Weigert EC, Stottlemyer AL, Chenz JG, Electrochem. Solid State Lett., 11(5), B63, 2008
  24. Shubina TE, Koper MTM, Electrochim. Acta, 47(22-23), 3621, 2002
  25. Ganesan R, Lee JS, Angew. Chem.-Int. Edit., 44, 6557, 2005
  26. Ganesan R, Lee JS, J. Power Sources, 157(1), 217, 2006
  27. Zhao S, Wangstrom AE, Liu Y, Rigdon WA, Mustain WE, Electrochim. Acta, 157, 175, 2015
  28. Blizanac BB, Ross PN, Markovic NM, Electrochim. Acta, 52(6), 2264, 2007
  29. Meng H, Shen PK, Electrochem. Commun., 8, 588, 2006
  30. Elezovic NR, Babic BM, Gajic-Krstajic L, Ercius P, Radmilovic VR, Krstajic NV, Vracar LM, Electrochim. Acta, 69, 239, 2012
  31. Meng H, Shen PK, Chem. Commun., 1, 4408, 2005
  32. Varcoe JR, Slade RCT, Fuel Cells, 5, 187, 2005
  33. Ma XM, Meng H, Cai M, Shen PK, J. Am. Chem. Soc., 134(4), 1954, 2012
  34. Meng H, Shen PK, J. Phys. Chem. B, 109(48), 22705, 2005
  35. Ross PN, Stonehart P, J. Catal., 48, 42, 1977
  36. Meng H, Wu M, Hu XX, Nie M, Wei ZD, Shen PK, Fuel Cells, 6, 447, 2006
  37. Zhu WM, Ignaszak A, Song CJ, Baker R, Hui R, Zhang JJ, Nan FH, Botton G, Ye SY, Campbell S, Electrochim. Acta, 61, 198, 2012
  38. Weigert EC, Stottlemyer AL, Zellner MB, Chen JG, J. Phys. Chem. C, 111, 14617, 2007
  39. Weigert EC, Esposito DV, Chen JGG, J. Power Sources, 193(2), 501, 2009
  40. Hwu HH, Chen JGG, Kourtakis K, Lavin JG, J. Phys. Chem. B, 105(41), 10037, 2001
  41. Zellner MB, Chen JGG, J. Electrochem. Soc., 152(8), A1483, 2005
  42. Liu N, Kourtakis K, Figueroa JC, Chen JGG, J. Catal., 215(2), 254, 2003
  43. Ham DJ, Kim YK, Han SH, Lee JS, Catal. Today, 132(1-4), 117, 2008
  44. Zheng H, Gu Z, Zhong J, Wang W, J. Mater. Sci. Technol., 23, 591, 2007
  45. Jeon MK, Lee KR, Lee WS, Daimon H, Nakahara A, Woo SI, J. Power Sources, 185(2), 927, 2008
  46. Angelucci CA, Deiner LJ, Nart FC, J. Solid State Electrochem., 12, 1599, 2008
  47. Keller N, Pietruszka B, Keller V, Mater. Lett., 60, 1774, 2006
  48. Sliney HE, Tribol. Int., 15, 303, 1982
  49. Hu FP, Ding FW, Song SQ, Shen PK, J. Power Sources, 163(1), 415, 2006
  50. Nie M, Shen PK, Wei ZD, J. Power Sources, 167(1), 69, 2007
  51. Hudson MJ, Peckett JW, Harris PJF, Ind. Eng. Chem. Res., 44(15), 5575, 2005
  52. Liang C, Tian F, Wei Z, Xin Q, Li C, Nanotechnology, 14, 9, 2003
  53. Koc R, Kodambaka SK, J. European Ceram. Soc., 20, 1859, 2000
  54. Wang GM, Campbell SJ, Calka A, Kaczmarek WA, J. Mater. Sci., 32(6), 1461, 1997
  55. Zhang FL, Zhu M, Wang CY, Int. J. Refract. Met. H., 26, 329, 2008
  56. Beak S, Jung D, Nahm KS, Kim P, Catal. Lett., 134(3-4), 288, 2010
  57. Rodella CB, Barrett DH, Moya SF, Figueroa SJA, Pimenta MTB, Curvelo AAS, Silva VT, RSC Adv., 5, 23874, 2015
  58. Wang R, Tian C, Wang L, Wang B, Zhang H, Fu H, Chem. Commun., 1, 3104, 2009
  59. Barton DG, Soled SL, Iglesia E, Top. Catal., 6, 87, 1998
  60. Jung D, Beak S, Nahm KS, Kim P, Korean J. Chem. Eng., 27(6), 1689, 2010
  61. Li B, Prakash J, Electrochem. Commun., 11, 1162, 2009
  62. Bae SJ, Yoo SJ, Lim Y, Kim S, Lim Y, Choi J, Nahm KS, Hwang SJ, Lim TH, Kim SK, Kim P, J. Mater. Chem., 22, 8820, 2012
  63. Hara Y, Minami N, Matsumoto H, Itagaki H, Appl. Catal. A: Gen., 332(2), 289, 2007