Issue
Korean Journal of Chemical Engineering,
Vol.34, No.8, 2147-2153, 2017
Porous MnO2/CNT catalysts with a large specific surface area for the decomposition of hydrogen peroxide
H2O2 vapor sterilization is an effective and safe method for removing various pathogens. To improve the efficiency of this technique, the time required for sterilization must be shortened. The aeration time constitutes a large portion of the total sterilization time; therefore, the development of a catalyst for H2O2 decomposition is necessary. Bulk MnO2 is typically used in H2O2 decomposition, but it has a low specific surface area. To increase H2O2 decomposition activity, specific surface area and electron transfer ability of catalyst need improvement. In this study, MnO2/ CNT(x), where x denotes the weight ratio of CTAB to H2O in the catalyst preparation, was synthesized using a soft template method with varying amounts of the template. Overall, the catalyst specific surface area remarkably increased to 190-200m2/g from 0.043m2/g for bulk MnO2 and these increased surface areas resulted in superior H2O2 decomposition activity. Among the CNT-supported catalysts tested, MnO2/CNT (1.0) exhibited the highest activity, which was 570 times that of bulk MnO2. Aeration times were also calculated with some assumptions and the aeration can be finished within 1 hr (bulk MnO2 needs about 25 hr).
[References]
  1. de Wit E, van Doremalen N, Falzarano D, Munster VJ, Nat. Rev. Microbiol., 14, 523, 2016
  2. Molins RA. Food irradiation: Principles and applications, Wiley- IEEE, New York (2001).
  3. Alfa MJ, DeGagne P, Olson N, Hizon R, Am. J. Infect. Control., 26, 469, 1998
  4. Berry DJ, Currier BH, Mayor MB, Collier JP, Clin. Orthop. Rel. Res, 470, 1805, 2012
  5. Matser AM, Krebbers B, van den Berg RW, Bartels PV, Trends Food Sci. Technol., 15, 79, 2004
  6. King RS, Devanathan TNC, Lin ST, Rohr WL, Swarts DF, US Patent, 5,522,897 (1995).
  7. Landrigan PJ, Meinhardt TJ, Gordon J, Lipscomb JA, Burg JR, Mazzuckelli LF, Lewis TR, Lemen RA, Am. J. Ind. Med., 6, 103, 1984
  8. Holmdahl T, Lanbeck P, Wullt M, Walder MH, Infect. Control Hosp. Epidemiol., 32, 831, 2011
  9. Mastrangelo G, Zanibellato R, Fedeli U, Fadda E, Lange JH, Int. J. Environ. Health Res., 15, 313, 2005
  10. Bianchi G, Mazza F, Mussini T, Electrochim. Acta, 7, 457, 1962
  11. Jeong HE, Kim S, Seo MG, Lee DW, Lee KY, J. Mol. Catal. A-Chem., 420, 88, 2016
  12. Seo MG, Kim S, Lee DW, Jeong HE, Lee KY, Appl. Catal. A: Gen., 511, 87, 2016
  13. Seo MG, Kim S, Jeong HE, Lee DW, Lee KY, J. Mol. Catal. A-Chem., 413, 1, 2016
  14. Seo MG, Kim HJ, Han SS, Lee KY, Catal. Surv. Asia, 21, 1, 2017
  15. Hasan MA, Zaki MI, Pasupulety L, Kumari K, Appl. Catal. A: Gen., 181(1), 171, 1999
  16. Hermanek M, Zboril R, Medrik N, Pechousek J, Gregor C, J. Am. Chem. Soc., 129(35), 10929, 2007
  17. Kim G, Jung KY, Lee CH, Han JS, Jeong BH, Park YK, Jeon JK, Mater. Res. Bull., 82, 76, 2016
  18. Lee YN, Lago RM, Fierro JLG, Gonzalez J, Appl. Catal. A: Gen., 215(1-2), 245, 2001
  19. Gupta KC, Abdulkadir HK, Chand S, J. Mol. Catal. A-Chem., 202(1-2), 253, 2003
  20. Zhang K, Zhang C, Xie K, Text. Res. J., 85, 1704, 2015
  21. Walling C, Goosen A, J. Am. Chem. Soc., 95, 2987, 1973
  22. Lee DW, Lee MS, Lee JY, Kim S, Eom HJ, Moon DJ, Lee KY, Catal. Today, 210, 2, 2013
  23. Baek SC, Bae JW, Cheon JY, Jun KW, Lee KY, Catal. Lett., 141(2), 224, 2011
  24. Ryu JH, Lee KY, La H, Kim HJ, Yang JI, Jung H, J. Power Sources, 171(2), 499, 2007
  25. Wang T, Zhang X, Liu H, Guo Y, Zhang Y, Wang Y, Sun B, Catal. Surv. Asia, 21, 94, 2017
  26. Jeon SW, Lee JE, Park JK, Kim SH, Korean J. Chem. Eng., 32(2), 230, 2015
  27. Amini M, Korean J. Chem. Eng., 33(1), 126, 2016
  28. Lee YH, Kim H, Choi HS, Lee DW, Lee KY, Korean J. Chem. Eng., 32(11), 2220, 2015
  29. Du X, Zou G, Wang X, Catal. Surv. Asia, 19, 17, 2015
  30. Ghimbeu CM, Malak-Polaczyk A, Frackowiak E, Vix-Guterl C, J. Appl. Electrochem., 44(1), 123, 2014
  31. Chen H, He J, Zhang C, He H, J. Phys. Chem. C, 111, 18033, 2007
  32. Jin M, Park JN, Shon JK, Li Z, Lee E, Kim JM, J. Porous Mat., 20, 989, 2013
  33. Wang YT, Lu AH, Zhang HL, Li WC, J. Phys. Chem. C., 115, 5413, 2011
  34. Yan W, Ayvazian T, Kim J, Liu Y, Donavan KC, Xing W, Yang Y, Hemminger J, Penner RM, ACS Nano, 5, 8275, 2011
  35. Lee CW, Yoon SB, Bak SM, Han J, Roh KC. Kim KB, J. Mater. Chem., 2, 3641, 2014
  36. Ding K, Hu B, Xie Y, An G, Tao R, Zhang H, Liu Z, J. Mater. Chem., 19, 3725, 2009
  37. Zhang M, Wu Y, Feng X, He X, Chen L, Zhang Y, J. Mater. Chem., 20, 5835, 2010
  38. Lee H, Kim S, Lee DW, Lee KY, Catal. Commun., 12, 968, 2011
  39. De Laat J, Gallard H, Environ. Sci. Technol., 33, 2726, 1999
  40. Huang CP, Huang YH, Appl. Catal. A: Gen., 346(1-2), 140, 2008
  41. Xia H, Lai M, Lu L, J. Mater. Chem., 20, 6896, 2010
  42. Soydas B, Culfaz PZ, Kalipcilar H, Culfaz A, Cryst. Res. Technol., 44, 800, 2009
  43. Park GO, Shon JK, Kim YH, Kim JM, J. Nanosci. Nanotechnol., 15, 2441, 2015
  44. Leofanti G, Padovan M, Tozzola G, Venturelli B, Catal. Today, 41(1-3), 207, 1998